Future trends and technologies in Mobile and Internet communications @ CFIC 2013

Future trends of Mobile and Internet Communications are revealed at the Conference on Future Internet Communications 2013 in Coimbra, Portugal. The many different speeches and talks show that Cloud Computing could play a major role in future Mobile Communication networks. The first keynote speech of the Conference was held by Alexander Sayenko, researcher at Nokia […]


OpenStack Grizzly installation for the lazy

As kindof advertisement for the new OpenStack Grizzly release we have created an automated single-node OpenStack Grizzly installation which uses Vagrant and Puppet. The automated installation can be downloaded from Github using the following URL: https://github.com/kobe6661/vagrant_grizzly_install.git Please feel free to install it on your machine and test the new release. Schlagwörter: Github, grizzly, installation, openstack, […]


Dependability Modeling on OpenStack: Part 2

In the previous article we defined use cases for an OpenStack implementation according to the usage scenario in which the OpenStack environment is deployed. In this part of the Dependability Modeling article series we will show how these use cases relate to functions and services provided by the OpenStack environment and create a set of dependabilities between use cases, functions, services and system components. From this set we will draw the dependency graph and make the impact of component outages computable.



Dependability Modeling on OpenStack: Part 1

Dependability Modeling is carried out in 4 steps: model the user intercations, model the system functions, model the system services and then model the system components which make system services available. In the first part we will define which interactions could be expected from end users of the OpenStack cloud platform and construct the first part of the dependability graph. Once the dependapility model is constructed, a Dependability Analysis will be performed and several OpenStack HA architectures will be rated according to their outage risk.


Dependability Modeling: Testing Availability from an End User’s Perspective

In a former article we spoke about testing High Availability in OpenStack with the Chaos Monkey. While the Chaos Monkey is a great tool to test what happens if some system components fail, it does not reveal anything about the general strengths and weaknesses of different system architectures. In order to determine if an architecture with 2 redundant controller nodes and 2 compute nodes offers a higher availability level than an architecture with 3 compute nodes and only 1 controller node, a framework for testing different architectures is required. The “Dependability Modeling Framework” seems to be a great opportunity to evaluate different system architectures on their ability to achieve availability levels required by end users.




The core components of any HA strategy

In his excellent article in Linux Technical Review #04 Jens-Christoph Brendel proposes a new way how to implement High Availability (HA) in current IT architectures. According to Bendel, modern IT architectures continually gain in complexity. This fact makes it difficult to guarantee availability on a certain level. Nevertheless High Availability is not merely a competitional advantage: for many companies keeping availability levels above 99,999 % per year is a matter of existence. Therefore a few systematic steps should help in planning and implementing high availability in your IT environment. This article shows a possible strategy on how to plan High Availability in the Mobile Cloud environment.