SC2 2018 – The 8th IEEE International Symposium on Cloud and Services Computing

The 8th IEEE International Symposium on Cloud and Services Computing (IEEE SC2) 2018, took place in Paris, France, from the 19th to 22nd of November. The conference was co-located with two more events, namely the 5th International Conference on Internet of Vehicles (IOV) 2018 and the 11th IEEE International Conference on Service-Oriented Computing and Applications (IEEE SOCA) 2018.

We from the ICCLab participated for first three days of the SC2 conference as its focus on Cloud related topics meets our expertise and research interests for research and development activities. The main themes in focus were Cloud Platforms and Services, Networking and Services, and Cloud and SOA Services.

As an important venue for researchers and industry practitioners, SC2 offered the opportunity to exchange information about recent  advancements for IT-driven cloud computing technologies and services. The conference hosted a good number of participants for a familiar context were interacting with peers was easy, not in the last place over the coffee and lunch breaks.  In total 68 oral presentations were planned in 15 sessions. Additionally 10 posters were presented in a poster session and 3 keynotes were organized. The conference was organized over three days, with the first day being dedicated to tutorials and the next days with parallel sessions for each of the co-located conferences.

Besides attending the event itself, the main motivation to visit the SC2 conference was to present our paper entitled “Hera Object Storage: A seamless, Automated Multi-Tiering Solution on Top of Openstack Swift”. In the presented paper we highlighted some of our recent results from research in the field of Cloud storage. In particular, the focus of the contribution is in the fast-growing field  of unstructured data storage in distributed cloud.  We proposed an object storage solution built on top of OpenStack Swift. This solution is able to apply a multi-tiering storage to unstructured data in a seamless and automatic manner. The object storage decisions are taken based on the data temperature, in terms of current access rate.

The first day of the conference, was the day of my arrival. The first tutorial I could attend gave  insights in the NVIDIA company and their activities in the automotive industry. Various interesting results were presented, supported by real-world test videos. We could see how NVIDIA as a market leader supports manufacturers in building self-driving cars. We could appreciate how a full range of real-world conditions influencing the traffic conditions could be handled. The amount of work behind these results was probably not completely clear to many of us, but the needed hardware and software infrastructure was clearly huge!

The second very interesting talk was showing an interesting business model presented by Qarnot computing, France.  The model they presented promoted a solution where computing and heating are delivered from a cloud infrastructure. The solution is based on a geo-distributed cloud platform with server nodes named digital heaters. Each heater embeds processors or GPU cards and is connected to the heat diffusion system. With this solution, homes, offices and other buildings can be heated through the distributed data center which is able to balance the requests in computation and heating.

The last tutorial of the day proposed some basics of machine learning for unsupervised algorithms. A review on the applications and the challenges faced when dealing with data sets was also given.

The second day started with the official opening of the conferences with the presentation of the program. This was followed by a keynote on scheduling methods for elastic services as for a project driven by the AlterWay company in France. The rest of the day we had two conference sessions and a further Keynote speech where Cybersecurity, with its links to geopolitical issues, was in focus.

In the first SC2 session I attended we could follow presentations about the following topics: a comparison between unikernels and containers, user plane management for 5G networks, a cost analysis of virtual machine live migration, and two papers on automated tiered storage solutions, one of which I presented myself. The second session was dedicated to work in progress papers, covering topics like contextual information searching for encrypted data in cloud storage services, smart contracts with on and off-blockchain components, cloud native 5G virtual network functions.

The evening we could enjoy a banquet on the Seine river with all the conference attendees. The cruise on the Seine brought us close to the main sightseeing attractions of beautiful Paris. A fish-based dinner was served completing a perfect environment to exchange experiences with other conference participants.

Day 3 started with an enlightening keynote speech of Prof. Cesare Pautasso from the University of Lugano, Switzerland, which described the recent trend in terms of software development. This is dictated by the current scenario where end-users have multiple devices to access their data and contents and managing their personal information. To best manage such a complex multi-device user environment Liquid software is needed, whereby software can seamlessly flow and adapt to the different devices.

After the last session with some interesting papers presenting among others solutions for multi-objective scheduling in cloud computing, confidentiality and privacy issues in the Cloud, it was time to head back home. Our participation to the SC2 conference was definitely positive and we will surely consider next year’s conference edition as possible venue to share our new research experience.

Cloud storage

Overview

Storage, together with computing and networking, is one of the fundamental parts of IaaS.

The research initiative on cloud storage at ICCLab, under the Infrastructure theme, focuses on the exploration of the limiting factors of the available storage systems, aiming at identifying new technologies and providing solutions that can be used to improve the efficiency of data management in cloud environments.

The need for advanced distributed architectures and software components allowing the deployment of secure, reliable, highly available and high-performing storage systems is clearly remarked by the fast growing rate of user-generated data. This trend sets challenging requirements for service and infrastructure providers to find efficient solutions for permanent data storage in their data centers.

About Cloud Storage Systems

A cloud storage system is typically obtained through a composition of software resources (running in a distributed environment), and a set of physical machines (i.e., servers), that exposes access to a logical layer of storage.

Cloud storage provides an abstract view of the multiple physical storage resources that it manages (these can be located across multiple servers, or even across different data centers) and it internally handles different layers of transparency that ensure reliability and performance.

The main concepts that are to be found in cloud storage systems are:

  • Data replication and reliability. Policies can be defined in such a way that copies of the same data are spread across different failure domains, to ensure availability and disaster recovery.
  • Data placement. A cloud storage system exposes a logical view of storage and internally handles how data is assigned to the available resources. This allows for e.g., striping data and improving access performance by using parallel accesses, or ensuring a proper load balancing between a set of nodes.
  • Availability. As a distributed system, cloud storage must not exhibit any single point of failure. This is usually achieved by introducing redundancy in hardware components and by implementing fail-over policies to recover from failures.
  • Performance. Concurrent accesses to data can improve data rates significantly as different portions of the same file or object can be provided by two different disks or nodes.
  • Geo-replication. A cloud storage system can replicate data in such a way that it is closer to where it is consumed (e.g., across data centers on different regions) to improve the access efficiency.

Objectives

  • Implement research ideas into working prototypes that can attract industrial interest
  • Obtain funding by participating in financed research projects
  • Produce and distribute our open source implementations
  • Keep and increase the reputation of the ICCLab in international contexts
  • Define a strong field of expertise in Distributed File Systems and software solutions for storage
  • Explore and implement clustered storage architectures

Research Topics

From an applied research perspective, the scenario of cloud computing and the growing demand for efficient data storage solutions, offers a ground where many areas and directions can be explored and evaluated.

Here at the ICCLab, the following aspects are currently being developed in the cloud storage initiative:

Contacts