Tag: vnf

T-Nova final year demo and project review outcome

The ICCLab T-Nova members are back from the 3rd and final project review meeting that was held on March 16th in Athens, Greece. Couple of days before that, we were enrolled in the preparation and setup of the final demos at N.C.S.R. Demokritos premises.

Several demonstrations were shown to the reviewers during the demo session in order to point out the achievements in the last year of the project. Moreover a poster session was held in parallel to stress the contributions in terms of conference and journal papers published within the project’s scope, Figure 1.

Continue reading

Orchestrate your network service with Netfloc plugin for OpenStack Heat

Stitching virtual network functions (VNFs) together in a so called Network (Service) Function Chain is not a novelty any longer. Described in our previous post, the SDN team had already worked on creating SFC library support for OpenStack in our SDK for SDN. In this blog we describe the advances made towards integrating Netfloc services with both, Heat Orchestration Template (HoT) – based orchestrators and Network Function Virtualization (NFV) – based orchestrators.

To do so, and also to make a step towards automatizing the SFC management with Netfloc, we created a Heat plugin for Netfoc. It is based on the Netfloc API library for managing network service chains in OpenStack clouds. The parameters required to create the service include: OpenDaylight credentials, the IP and the port of the Netfloc node, along with the Neutron port IDs of the VNF instances.

For a network service operator, applying the plugin makes it very simple to deploy multiple chains in OpenStack cloud infrastructure. An example includes a packet inspection VNF that determines if the traffic is video and the type of the video service, and sends it further to a virtual transcoding unit VNF for quality adjustment. If data traffic is detected, packets are steered to a virtual security appliance acting as a virtual firewall, which sends them further to a virtual proxy VNF and a deep packet inspection VNF.

Continue reading

Service Function Chaining using the SDK4SDN

Last week in Athens we integrated the SDK4SDN aka Netfloc in the T-Nova Pilot testbed in order to showcase service function chaining using two endpoints and two VNFs (Virtual Network Functions).

NETwork FLOws for Clouds (Netfloc) is an open source SDK for datacenter network programming developed in the ICCLab SDN initiative. It is comprised of set of tools and libraries that interoperate with the OpenDaylight controller. Netfloc exposes REST API abstractions and Java interfaces for network programmers to enable optimal integration in cloud datacenters and fully SDN-enabled end-to-end management of OpenFlow enabled switches.

Continue reading

ACeN Begins!

Recently the ICCLab, ZHAW acquired a KTI project, ACeN – Apache CloudStack for NFV. Cloudstack is one of the front running Infrastructure-as-a-service (IaaS) platforms for cloud environment. Leveraging Network-function virtualization (NFV) as the concept of replacing dedicated network hardware with a software providing the same network functions, increases network capabilities such as service availability in the cloud. This project has now commenced and the interaction between partners Citrix, Exoscale and ZHAW. Everyone is highly engaged already and from our  perspective we’re very excited to about this work.

The ACeN project will deliver services and prototypes based on the NFV standard and Apache CloudStack. A novel hybrid load-balancing service (HLBS) will be created and and key NFV demonstrators will be prototyped. It is hybrid as it combines IP address management and load balancing into one service/function. All will follow a common architectural approach, on common technology. This work will leverage and can enable access to a market worth up to $2.4 Billion by 2018.

The majority of outputs from the project will be made open source (under ASL 2.0), including the hybrid load balancing service. Much of the work in ACeN is exploiting the research work carried out in Mobile Cloud Networking and also the Hurtle orchestration framework.

From our lab’s perspective, this project demonstrates concretely our research approach of bringing foundational research and open source impact through an innovation transfer process to Swiss SMEs.

Stay tuned for more updates!