Tag: docker

Presenting the MAO Orchestrator

The MAO-MAO research collaboration aims to provide metrics, analytics and quality control for microservice artefacts of all kinds, including but not limited to, Docker containers, Helm charts and AWS Lambda functions. As such, an integral part of prior research has been the various periodic data collection experiments, gathering metadata and conducting automatic code analysis.

However, the ambition of the project to collect data consistently, combined with the need for the collaborators to be able to use each other’s tools and access each other’s data, have created a need for a collaboration framework and distributed execution platform.

In response to this need, we present the first release of the MAO Orchestrator, a tool designed to run these experiments in a smart way and on a schedule, within a federated cluster across research sites. As a plus, there is nothing implementation-wise tying it to the existing assessment tools, so it is reusable for any use-case that requires collaboratively running periodic experiments.

Continue reading

Introducing the Docker Compose Validator

When cloud application developers are working with docker-compose to combine multiple microservices into a single manageable entity, they can make some easy mistakes. To prevent these mistakes, they can rely on internal validation logic, which however does not catch many of the typical issues. Therefore, researchers at the Service Prototyping Lab at Zurich University of Applied Sciences wrote a dedicated quality check and assessment tool targeting developers, but also students trying to learn the technology, which has a wider range of checks. The DCValidator tool is available as a web application (see demo instance) or command-line interface. This blog post describes how to check that docker-compose files are free of issues.

docker-compose validator Web interface
Continue reading

Calculating net cost of AWS Lambda Functions

With the increased adoption of serverless computing, so is the need to optimise cloud functions, to make use of resources as efficiently as possible, and to lower the overall costs in the end. At the Service Prototyping Lab at Zurich University of Applied Sciences, we investigate how cloud application and platform providers can achieve a fairer billing model which comes closer to actual utility computing where you pay only for what you really use. We demonstrate our recent findings with AWS Lambda function pricing.

Continue reading

Reflections on software artefact quality tutorial

Our work in the Service Prototyping Lab at Zurich University of Applied Sciences consists of applied research, prototype development and conveying knowledge to industry. In this context, we have worked hard over the previous two years to gather educational and hands-on material, including our own contributions, for increasingly valuable tutorials. From single lectures to half-day and eventually full-day tutorials, we aim at both technology enthusiasts and experienced engineers who are open for new ideas and sometimes surprising facts. In this reflective blog post, we report on this week’s experience of giving the full-day tutorial on microservice artefact observation and quality assessment.

Continue reading

Bundling CNA Applications

For almost five years, we have been researching cloud-native applications. As part of an industry-wide push to cloud-native computing, a lot of stacks and middleware components are proposed every day, but few tools and processes help improving the applications themselves especially in terms of quality attributes such as discoverability, elasticity and resilience. With Helm charts, there is already a higher-level approach to package cloud applications in Kubernetes environments. Our work on static analysis of Helm charts and quality assessment beyond is documented and ongoing. In this post, we take a first look at CNAB, or Cloud Native Application Bundle which is self-described as secure and cloud-agnostic way to deliver applications.

Continue reading

End-to-end testing of cloud-native applications

In our research group, we have for many years observed and systematically explored how cloud applications are being developed. In particular, we focus our investigations on cloud-native applications whose properties are largely determined by exploiting the capabilities of modern cloud platforms for both their development and operation. As we are involved in European research on testing cloud applications (Elastest), our aim was to look at the current project results through the cloud-native glasses. This blog post reports about end-to-end testing of composite containerised applications from this perspective.

Continue reading