When A Blind Shot Does Not Hit

missed_shotIn this article, I recount measures and approaches used to deal with a relatively small data set that, in turn, has to be covered “perfectly”. In current academic research and large-scale industrial applications, datasets contain millions to billions (or even more) of documents. While this burdens implementers with considerations of scale at the level of infrastructure, it may make matching comparatively easy: if users are content with a few high quality results, good retrieval effectiveness is simple to attain. Larger datasets are more likely to contain any requested information, linguistically encoded in many different ways, i.e., using different spellings, sentences, grammar, languages, etc.: a “blind shot” will hit a (one of many) target.

However, there are business domains whose main entities’ count will never reach the billions, therefore inherently limiting the document pool. We have recently added another successfully finished CTI-funded project to our track record, which dealt in such a business domain. Dubbed “Stiftungsregister 2.0”[1], the aim of the project was to create an application which enables users to search for all foundations in existence in Switzerland.

StiftungSchweizLogoRZ

Continue reading

Recall-Oriented Expert Search Using Relevance Feedback

The information engineering group at InIT has recently successfully concluded a CTI funded project. The project is called “expert-match” and has been conducted in cooperation with expert group ag, a professional recruitment and consulting business head-quartered in Zurich, Switzerland.

Expert group’s recruiting focus consists of staffing high-profile expert positions (e.g. specialized senior software engineers, senior management, IT architects). Usually, there are at most a handful of people qualified for a recruiting mandate within the relevant geographical region they operate in. The problem is further compounded by the fact that qualifications are rarely obvious, requiring insight into candidates’ former positions and overall skill sets. Exact matching of job descriptions with candidate profiles, such as in a database environment, is thus unlikely to find the desired experts. By implementing an information retrieval (IR) application, we were able to mitigate the problem. The application fully supports iterative searches, especially focussing on relevance feedback.

expert_match_process

Continue reading