
Towards sustainable ecosystems for cloud functions

Yessica Bogado-Sarubbi, Walter Benitez-Davalos, and Fabio Lopez-Pires

Information and Communication Technology Center
Itaipu Technological Park
Hernandarias, Paraguay

Email: {yessica.bogado,walter.benitez,fabio.lopez}@pti.org.py

Josef Spillner

Service Prototyping Lab
Zurich University of Applied Sciences

Winterthur, Switzerland
Email: josef.spillner@zhaw.ch

Abstract

The main technologies around modern cloud
development and deployment paradigms such as
Function-as-a-Service (FaaS) environments follow a
typical technology life-cycle. Starting with basic code
installation and execution environments, they unfold
into a complete ecosystem with rich collaborative
development and market enablement tools. In this
paper, we analyse the growth of such ecosystems,
reveal causes of hindrances in previous service-oriented
approaches, and present a vision of how an ecosystem
with sustainable operation could look like both in gen-
eral and specifically for cloud functions. We present
Function Hub, a partial prototypical implementation
to gain first knowledge about the potential operational
ecosystem behaviour.

Keywords: Cloud Applications, Serverless Com-
puting, Service Ecosystems, Tangible Microservices,
Marketplaces.

1 Problem statement

In the late 1990s and early 2000s, the idea of
marketplaces to exchange software development arte-
facts arose in the research communities for Component-
Based Software Engineering (CBSE) and later Service-
Oriented Software Engineering (SOSE).

According to the early visions, rich ecosystems
would emerge based on centralised exchanges such as
registries implementing the Universal Description, Dis-
covery and Integration (UDDI) specification including
the Universal Business Registry (UBR) (Saini 2016).
Yet, on a large scale, the ideas mostly failed. In-
stead, several technology-specific exchanges, often de-
centralised, have emerged in recent years. After several
iterations across web technologies, heavy-weight and
light-weight cloud technologies and more recently fog
computing approaches, a few of them have manifested
as useful practical tooling. A brief overview on rele-
vant technology-specific exchanges is presented next in
Table 1.

Technology Exchange

Source code GitHub
Java libraries Maven
Containers Docker Hub

Web services Programmable Web
Cloud services Open Service Broker API

Table 1: Overview on technology-specific exchanges.

Hence, the initial ideas increasingly become viable
albeit often in limited form, focusing on pragmatic pro-
ductivity gains especially for rapid prototyping of com-
posite applications and services.
In the context of previously described ecosystems,
emerging computing paradigms such as Function as

18



a Service (FaaS) (Baldini et al. 2017) taking into ac-
count serverless computing architectures and imple-
mentations with cloud functions, relevant challenges
still remain open as the ones presented as follows.

• Who operates such exchanges (e.g. brokers or
marketplaces) in a sustainable way?

• If the operation of these exchanges is not cen-
tralised and not linked to concrete business mod-
els, how can it be sustained?

• Which future exchanges will emerge for new tech-
nologies such as cloud functions in seemingly
serverless computing environments?

• How these future exchanges may look like?

Starting by answering the last question, this paper
presents our position by outlining an ecosystem vi-
sion for exchanging and collaboratively developing soft-
ware with cloud functions. Additionally, a comparison
of the conceptual ecosystem against existing ones is
presented, and main reasons about the sustainability
aspects are included to give answers to the remaining
three questions.

2 Ecosystem analysis

For conceptualisation and contextualisation, an
analysis of the actual software ecosystem environment
is needed. In this section a definition is presented as
well as an analysis of ecosystems current growth and
obstacles.

2.1 Ecosystem Definition

In this paper an ecosystem is defined to be an open
system consisting of a set of technical elements which
enable growth by attracting contributions from par-
ticipants. Among the elements are service-oriented
elements (marketplaces, hubs, brokers), as well as
platforms and further provider and consumer tools.

2.2 Growth of ecosystems

Ecosystems can be measured primarily by looking
at provider and consumer metrics which cover both
the absolute volume and the growth factors. Yu
observes the co-evolution of ecosystems on a wider scale
from a provider perspective involving hardware, sys-
tem software and software-implemented applications

(Yu 2011). Among his key observations is the slow-
down effect which occurs when moving up the stack.
The dependent products grow slower with logarithmic
relation compared to the independent product. From
a consumer perspective, Petsas et al. reveal in the
context of mobile application ecosystems that down-
load statistics do not follow a Zipf distribution (Petsas
et al. 2013). In these systems, there are moreover few
alternative system software choices, leading to a com-
parably huge offering of applications.

2.3 Obstacles and hindrances

A key concern is the stakeholder structure behind the
operating entities of ecosystem elements. Multiple
popular exchanges are operated by a single commercial
player. In case of bankruptcy or change of business
model, the exchange may vanish or fade into obscu-
rity quickly. The ownership structure also distorts the
analysis of the economic viability. Docker Hub, for in-
stance, is operated by Docker, Inc. but does not itself
generate direct revenue. Instead, it is cross-financed by
other company operations whose growth is in turn sup-
ported by the dominance of the exchange on the mar-
ket. Another issue is the concentration of providers in
ecosystems. For example, images on Docker Hub are
prone to several security issues. This situation also af-
fects the officially maintained images from which the
issues propagate into derivatives. Any security vul-
nerability that could be exploited has the potential
to affect vast shares of development and deployment
workflows in critical applications as a consequence (Shu
et al. 2017).
In summary, main identified obstacles and hindrances
could be single commercial owners and concentration
of providers in ecosystems.

3 Value proposition and position

This paper propose to strive towards sustainable
ecosystems for heterogeneous application development
artefacts which can be customised for arbitrary do-
mains including cloud and mobile applications and
so forth. The sustainability will be achieved by de-
centralisation and abstraction. Arguing that by
a suitable combination of decentralised ecosystem el-
ements with built-in abstraction capabilities, a long-
term growth and sustainable operation can be achieved
even in volatile environments with changing technolo-
gies and market forces.

19



Decentralization
Decentralized 
repositories

Users

Functions Hub Interface

Abstraction
Abstraction tools

Figure 1: General view of the proposed ecosystem.

The considered arguments are as follows.

• Decentralisation: In recent years, several appli-
cations on the Internet have become centralised
conglomerate services. Yet over longer periods of
time, they may not prevail (DeLegge & Wangler
2017). A decentralised ecosystem guarantees that
in a worst case even when individual market par-
ticipants vanish, the system will continue to func-
tion in reduced form.

• Abstraction: The right level of abstraction is
important. While existing ecosystems have only
become successful for technologically specialised
artefacts, there is a large spectrum between these
and fully generic approaches which can be ex-
ploited. This exploitation can be partially auto-
mated by converting formats and protocols.

To include these characteristics in a serverless
ecosystem, the following approach has been establish
as shown in Figure 1. For decentralisation, a set of de-
centralised repositories that allows users to download,
test and use cloud functions directly. These reposito-
ries will be connected through a marketplace, where
developers will be able to share, deploy and even com-
mercialise cloud functions. For abstraction, tools to
convert and deploy functions will be used, allowing de-
ployment on a diverse set of cloud providers.

4 Conceptual elements perspective

This section covers detailed design and architecture of
the core elements within the proposed ecosystem.

4.1 Marketplaces

The idea of a marketplace is to create an environ-
ment where developers could interact with the plat-
form ecosystem in a way that allows them to create,
share and trade tools, enabling users to deploy, scale
and create functions more easily and efficiently.
In that sense, industry already has some marketplaces
from other software ecosystems. For example, GitHub
has the GitHub Marketplace, a marketplace where
third-party companies create and commercialise in-
tegration tools that allow users to work more effi-
ciently with their source code. Additionally, Docker
has DockerStore, a place where third-party companies
offer plugins and certified containers to docker users.
This allows them to access enterprise solutions and
create industry-ready applications using the Docker
ecosystem. Amazon Web Services (AWS) Marketplace
from Amazon, allows both users and third-party com-
panies to trade tools that uses the AWS ecosystem. At
the time of this writing, only Amazon has a first pro-
totype of a serverless ecosystem with some still basic
features1.
From the above mentioned example marketplaces,
some relevant characteristic that the marketplace
should have can be specified:

• Enable third-party companies and/or users to cre-
ate tools that interact with the ecosystem.

• Enable third-party companies and/or users to
commercialise their add-on tools.

• A framework that allows users to collaborate with
each other within the ecosystem.

• Integration with other software platforms (Docker,
GitHub, AWS, among others).

One characteristic that stands out of these software
platforms is marketplace centralisation. This could
lead to potential software disruptions in case of change
of policies or departure of mayor stakeholders.

1https://aws.amazon.com/serverless

20



4.2 Converters

Even deployment-ready applications have to deal with
syntax associated with each cloud platform. For in-
stance, every serverless cloud platform has its own Ap-
plication Program Interface (API), methods and syn-
tax to deploy functions, generating a vendor lock-in
issue, where users have to create functions for specific
cloud providers instead of a general one.
A feasible solution is to automatically add wrappers
through a converter, allowing this way developers to
create code according to its real requirements, without
worrying with the code necessary to make it run on a
specific cloud environment. With the advent of mo-
bile edge computing, this could be a very interesting
approach to federate cloud providers.

4.3 Deployers

To accomplish a total integration with the industrial
cloud ecosystem, a flexible tool that allows users to de-
ploy their functions on multiple cloud environments is
needed. Most of the tools used in industrial cloud en-
vironments are associated to its own platforms. Ama-
zon Cloud Formation, Google Cloud Deployment Man-
ager and Azure Resource Manager are examples of lo-
cal frameworks that manage the set of resources for its
own specific platform.
For cloud multi-tenancy, for example, allowing migra-
tion from one cloud provider to another is a key fea-
ture. An example of a tool that currently applies this
concept is the serverless framework2, an open source
Command Line Interface (CLI) for building serverless
architectures and event-driven applications, using spe-
cific software resources for deployment of functions in
a wide set of cloud platforms.

4.4 Execution environments

To easily create and deploy functions, an execution en-
vironment has to be set in place. Each cloud provider
focuses its environment in accordance to an aimed de-
veloper group or their specific infrastructure. For ex-
ample, AWS Lambda supports major programming
languages such as Java, JavaScript, Python, C# and
lately Go. Each of these languages with their most
popular runtimes like Node.js, Java 8, Python 2 and
3, but they add extra features allowing users to inter-
act with the infrastructure. On the other hand, Azure
Functions supports major development languages for

2https://github.com/serverless/serverless

Microsoft like C#, F# , JavaScript or PHP. Never-
theless, the field of the deployment of functions does
not belong only to private platforms. In this context,
one of the most popular open source cloud platform
is Apache OpenWhisk, that execute functions in re-
sponse to events, supporting programming languages
like JavaScript/Node.js, Swift, Python, Java and even
implementing Docker logic.

4.5 Interaction and serverless ecosystem

In serverless architectures, cloud providers have com-
plete management over the environment in which func-
tions run. These creates high-level abstract environ-
ments for the users, where they should not worry about
deployment or maintenance and expects it to be fault-
tolerant with auto-scaling features (Baldini et al. 2017).
This architecture is basically a event-driven computa-
tion pattern that promotes loosely couple services and
ensures a trigger function execution (Stigler & Stigler
2018).
The interaction between users, interfaces and reposi-
tories is given in a way that presents a continuous ex-
changing of functions and allows the growth of a mar-
ketplace. The interface creates the link between all
repositories and users. Because each repository is per-
sonal, every user could create a new repository and has
the option to share theirs or store functions from other
users. As a way of allowing abstraction, every function
is created as simple as possible, to after that, establish
a conversion to match a cloud provider specific require-
ment.

4.6 Related ecosystems

At the time of this writing, a new serverless ecosystem
for sharing functions in AWS Lambda is the AWS
Serverless Application Repository. This repository al-
lows users of AWS Lambda to create, share and use
functions on that specific environment. The main
drawback of this new ecosystem is the vendor lock-in
issue, because all components are associated with this
specific provider, resulting in a centralised non-abstract
ecosystem. Additionally, it only allows registration for
users with an associated bank account (credit or debit
card), difficulting students to access this repository and
associated functions.
In contrast, the new approach considered for the pro-
posed ecosystem, let users create their own repository
to share, test and deploy functions. Remembering that
functions are created as simple as possible, they could

21



be converted and deployed in different cloud environ-
ments, making it easy to create functions associated
with a specific product without having any dependen-
cies over a certain provider.

5 Proof of concept and implemen-
tation

For a Proof of Concept (PoC), several ecosystem ele-
ments were implemented to gain insights and knowl-
edge about their actual behaviour and effectiveness.
For an implementation, it was focused on an event-
driven application as a subset of the entire cloud ap-
plication space, due to their alignment with stateless
cloud function processing. Furthermore, the use of
decentralised open messaging infrastructure was ex-
plored. Figure 2 shows the proposed ecosystem to
achieve a Function Hub that could help to cre-
ate a decentralised environments for the serverless
ecosystem.

5.1 Function marketplaces

The initial prototype its based on the core idea that
defines what and how elements are trade within it. In
this case, an ecosystem that allows free exchange of
functions between users and generates the required en-
vironment for a serverless market to proliferate.
For this purpose a Function Hub3 was designed con-
sidering the following characteristics:

• Decentralisation, by using an Extensible Mes-
saging and Presence Protocol (XMPP) for com-
munications, without centralised storage.

• Abstraction, by using Snafu4 which allows man-
aging cloud functions across provider convention
boundaries.

Additionally, the complete Function Hub ecosystem
is composed by four main components:

• Users: Users that access the Function Hub In-
terface5 to share and get functions according to
its needs.

• Function Hub Interface: It is a website based
on AngularJS which runs on a NginX server. Users

3https://github.com/serviceprototypinglab/functionshub
4https://github.com/serviceprototypinglab/snafu
5https://github.com/YessicaBogado/FunHub

can search a function by name or specifying other
attributes, having the testing option on the same
platform and then download functions according
to its requirements. For the interconnection be-
tween HTTP and XMPP protocols, a message bro-
ker named MW 2 was developed.

• Decentralisation: In this work, decentralisation
is achieved through repositories to store functions
and serving as an active server for users. A soft-
ware named Snafu (Swiss Army Knife of Serve-
less Computing), a FaaS host process, was used
for this task. Snafu was chosen because it ful-
fils two main characteristics, as an execution en-
vironment for functions (active mode) and as a
function repository (passive mode). As Function
Hub does not pretend to use an unique centralised
storage, it communicate with other repositories
through XMPP. For this reason, each provider has
a XMPP Client account associated to its message
broker MW 1 and to its associated XMPP Server
for sending data required by users. The use of
message brokers allows interconnection between
HTTP and XMPP protocols, because both Func-
tion Hub and Snafu use HTTP as a main protocol
connector. The implementation of the message
brokers (MW 1 and MW 2 ) was made through
flask and nbxmpp libraries in Python.

• Abstraction: The abstraction sector is composed
by a basic converter that add all the basic wrap-
pers needed to deploy the function, according to
most of the main cloud providers and uses the
serverless framework (Collins 2015) as a deploy-
ment tool.

5.2 Function converters

As an early prototype6, a converter of Python functions
was developed to add wrappers for different modules
that the file could have. It works according to these
steps:

• It consumes and checks if the function has some
run-time code to avoid security issues when im-
porting.

• After checking, depending of the choice of the con-
verter user, it dismantles different modules of the
file and adds wrappers with the function for each

6https://github.com/walter-bd/faas-converter

22



Encabezado

User

Decentralization
Decentralized repositories

Function Hub Interface

Repository 1

Fun_A

Fun_B

Web User Interface

Web Server

R XMPP Server 1

Repository 2

Fun_C

Fun_D

Repository M

Fun_E

Fun_F

User N

Web Browser

XMPP Server K

MW 1

MW 1

MW 1

MW 2

R R

HTTP

HTTP

HTTP

HTTP

HTTP HTTP

User 1

Web Browser

Abstraction
Abstraction tools

Converter

Deploy

Cloud Provider 

Figure 2: Proposed ecosystem implementation flowchart.

one on different files or it add the wrapper of one
of this module at the end of a copy of the file.

• It has option to add wrappers for providers like
AWS, OpenWhisk, Fission, OVH and Azure.

• The user can choose wherever to add the wrappers
on different files for each provider or to add it all
together in one file but, it has to manually check
for some collisions with other wrappers added.

This tool will allow users of the environment to easily
create standard function to deploy in different cloud
providers.

5.3 Function deployers

For deploying functions into the ecosystem, a new func-
tionality was needed to be added. This will give users
the option to upload their functions from their reposi-
tories to the Function Hub ecosystem; hence, for this
purpose a Snafu server is used.
To deploy functions from the Function Hub to a
private cloud provider is intended to use the server-
less framework, because this have already options to

facilitate the deployment on the most popular cloud
providers. Furthermore, a composeless7 service is being
developed to deploy functions on serverless ecosystems
or in a container, according to particular needs.

5.4 Function execution environments

The execution environment of the ecosystem is pro-
vided by the FaaS host process Snafu, and it’s sup-
port different programming languages like C, Java,
JavaScript and Python. Snafu is deployed on an
Alpine-based docker image, where it has the following
run-time environments Python 3.5, Python 2.7, open-
jdk8, nodejs and for compiling purpose gcc and g + +
for C programs.

5.5 Type of users

In the proposed ecosystem, the interaction is based in
four kind of users:

• Regular users: They use the ecosystem to look,
download, test or upload functions to allowed

7https://github.com/serviceprototypinglab/composeless

23



repositories. To make this possible, a web interface
is available, showing the user all the repositories
and its respective functions.

• Exclusive repository user: For companies that
want to create exclusive functions to their prod-
ucts associated with their own infrastructure.
Function Hub would provide a place where they
can share the use of this function, allowing them
to decide what to share and what to sell.

• Passive repository user: In this case, collabo-
rative users or companies could create a repository
so that other users could use it to store its func-
tions.

• Active repository user: It would work as a Pas-
sive Repository, but also will allow regular users
to test the functions or execute it there.

6 Conclusions and future directions

The rapid growth of serverless computing creates a
need for an ecosystem in order to bring users necessary
tools for a fast and cheap deployment of their software.
On that point, Amazon took the first steps, providing
to their users a serverless repository with basic func-
tionalities. Also, new open source serverless initiatives,
like OpenWhisk and Fission, gives developers freedom
to create new tools.
However, and as it was showed in this paper, it is also
needed properties like decentralisation and abstraction
that allows them to create applications that interact
with a diverse cloud ecosystem and take advantage of
this diversity according to their needs, without worry-
ing when individual market participant vanish. Point-
ing on that direction, this paper presented a vision
for how ecosystems with a decentralised Function Hub
may give to developers a way to share their functions,
thinking not only on a specific cloud provider but also
considering application itself instead. Further discus-
sion, research and develop is required with the objec-
tive of give such ecosystem essential properties like sus-
tainability, scalability and reliability associated with a
wider adoption.

References

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink,
S., Ishakian, V., Mitchell, N., Muthusamy, V.,

Rabbah, R., Slominski, A. et al. (2017), Serverless
computing: Current trends and open problems, in
‘Research Advances in Cloud Computing’, Springer,
pp. 1–20.
URL: https://doi.org/10.1007/978-981-10-5026-
8 1

Collins, A. (2015), ‘Serverless framework’, GitHub.
URL: https://github.com/serverless/serverless

DeLegge, A. & Wangler, H. (2017), ‘Is this the end for
facebook? A mathematical analysis’, Applied Math-
ematics and Computation 305, 364–380.
URL: https://doi.org/10.1016/j.amc.2017.02.014

Petsas, T., Papadogiannakis, A., Polychronakis, M.,
Markatos, E. P. & Karagiannis, T. (2013), Rise
of the planet of the apps: a systematic study of
the mobile app ecosystem, in ‘Proceedings of the
2013 Internet Measurement Conference, IMC 2013,
Barcelona, Spain, October 23-25, 2013’, pp. 277–290.
URL: http://doi.acm.org/10.1145/2504730.2504749

Saini, A. (2016), An extension to UDDI for the dis-
covery of user driven web services, in ‘Distributed
Computing and Internet Technology - 12th Inter-
national Conference, ICDCIT 2016, Bhubaneswar,
India, January 15-18, 2016, Proceedings’, pp. 92–96.
URL: https://doi.org/10.1007/978-3-319-28034-
9 11

Shu, R., Gu, X. & Enck, W. (2017), A study of
security vulnerabilities on docker hub, in ‘Proceed-
ings of the Seventh ACM on Conference on Data
and Application Security and Privacy, CODASPY
2017, Scottsdale, AZ, USA, March 22-24, 2017’,
pp. 269–280.
URL: http://doi.acm.org/10.1145/3029806.3029832

Stigler, M. & Stigler, M. (2018), Beginning Serverless
Computing, Springer.
URL: https://doi.org/10.1007/978-1-4842-3084-
8 1

Yu, L. (2011), ‘Coevolution of information ecosystems:
a study of the statistical relations among the growth
rates of hardware, system software, and application
software’, ACM SIGSOFT Software Engineering
Notes 36(6), 1–5.
URL: http://doi.acm.org/10.1145/2047414.2047435

24


