
Companion Guide to Distributed Service
Prototyping with Cloud Functions – Tutorial @

ICDCS 2018

Josef Spillner
Zurich University of Applied Sciences, School of Engineering

Service Prototyping Lab (blog.zhaw.ch/icclab/)
8401 Winterthur, Switzerland

josef.spillner@zhaw.ch

June 30, 2018

Learning Objective

Learn on a practical level about different FaaS programming conventions,
runtimes, service providers and tools. Use some of the tools by yourself to
“FaaSify” simple Python or Java applications and to execute and debug
functions.

Note: This transcript contains ready-to-repeat commands for the first suc-
cessful steps with functions in cloud environments. It is based on a previous
one initially used for PyParis’17 (around 2 hours) and UCC’17 (half-day). The
transcript has been extended in order to capture a larger set of tools suitable
for a full-day tutorial. It is by no means complete; additions for future derived
or specialised tutorials are welcome.

Contents
1 Code Transformation: Using Lambada 2

2 Code Transformation: Using Termite 4

3 Controlled Execution: Using Snafu 5

4 Controlled Execution: Using OpenFaaS 7

5 Controlled Execution: Using Fission 7

6 Controlled Execution: Using OpenLambda (tentative) 8

7 Outsourced Execution: Using AWS Lambda 8

1

transcript

type:
tutorial

distribution:
public

status:
final

initiative:
Service Tool-
ing

8 Outsourced Execution: Using IBM Cloud Functions 9

1 Code Transformation: Using Lambada
Lambada extracts your functions and methods from Python code files and turns
them into cloud-hosted functions. To learn more about it, read the Lambada
preprint [2] and its README file.

Obtain Lambada directly from its source repository. You will furthermore
need Python 3.5 or more recent installed for which the assumed command name
is python3.

Listing 1: Obtaining Lambada
git clone https :// gitlab.com/josefspillner/lambada.git
cd lambada

Start by creating a file temperature.py with an editor of your choice (e.g.
vim, joe). It contains one function and one class which together form your
«temperature application» (Listing 2).

Listing 2: Temperature application
def temperature ():

return 42.23
class CityTemperature:

def temperaturecity(self , city):
temp = {"Vienna": 20, "Zurich": 21}
return temp[city]

Now use Lambada to transform the contents into FaaS units which can
still be executed locally but are ready to be deployed in AWS Lambda and
compatible function runtimes (Listing 3).

Listing 3: FaaSification process
./ lambada --local temperature.py

Then verify the generated Python file and notice its structure. Use any
editor or file viewer of your choice (e.g. less) on the newly generated file
temperature_lambdafied.py.

Afterwards, check the functionality in the Python console. Run the following
commands (Listing 4; the console is indicated by >>>) to import the generated
code as module which contains the original methods and generated ones.

Note: The method temperature_remote is the Lambda signature-compliant
function, and the method netproxy_handler is equally Lambda signature-
compliant and wraps method calls on objects whose attributes are transferred
between the local proxy object and the FaaS-hosted remote object. It exists as
single method along with the single class Netproxy for an arbitrary number of

2

classes. Thus, functions are statically rewritten (along with generated invoca-
tion code) whereas methods are dynamically proxied in a FaaS context, offering
a suitable drop-in module to offload code to a FaaS environment.

Listing 4: FaaSified temperature application
python3
>>> import temperature_lambdafied as temperature
>>> dir(temperature)

>>> temperature.temperature ()
>>> temperature.temperature_remote(None , None)
>>> temperature.netproxy_handler ({"d": "{}", "name": "

temperaturecity", "args": ["Winti"], "classname": "
CityTemperature"}, None)

Finally, it is time to deploy the code to AWS Lambda and execute it there.
You can run the command twice to verify that in the second case no redeploy-
ment happens (Listing 5). In parallel, you can verify the deployments in the
AWS Lambda Dashboard at https://<orgname>.signin.aws.amazon.com/console.

Listing 5: FaaSified temperature application
./ lambada temperature.py
./ lambada temperature.py # nothing happens , already deployed

As these operations require an AWS account, you can alternatively deploy
to a running Snafu instance; see Section 3. The commands would be amended
with an endpoint configuration as follows. Note that Lambada still requires
the aws command-line tool (AWS CLI) to be present in this case and it does
have to be configured a priori with a region name (arbitrary) and credentials
either matching the snafu-control accounts or as arbitrary values in case no
authentication is required (i.e. without Snafu’s -a parameter).

Listing 6: FaaSified temperature application using Snafu
./ lambada --endpoint http :// localhost :10000 temperature.py

For a more advanced use case, consider annotating the functions. Function-
level annotations are called decorators in Python. You will need to provide a
stub decorator implementation in your code which is then interpreted accord-
ingly by Lambada. Only annotated functions are then selectively transformed
and published. Assume you only want to export the temperature function but
not an associated secret function, use the code below (Listing 7). Run the same
commands as before but now include the –annotations switch as well to filter
out the secret function.

Listing 7: Decorated temperature application
def cloudfunction(f): return f

@cloudfunction

3

def temperature ():
return 42.23

def secretfunction ():
return "secret"

Even more advanced is the parameterisation of the decorators to customise
the runtime behaviour of functions. Consider the following example which as-
signs more memory than usually to the temperature function and allows it to
run more time than the default timeout of 3 seconds in AWS Lambda (Listing
8).

Listing 8: Parameterised decorated temperature application
def cloudfunction (** kwargs):

def real_cloudfunction(f):
def wrapper (*args , ** kwargs):

return f(*args , ** kwargs)
return wrapper

return real_cloudfunction

@cloudfunction(memory =512, duration =10)
def temperature ():

return 42.23

2 Code Transformation: Using Termite
Termite extracts your functions from Java code files. It has been designed to
overcome several flaws of Podilizer while working similarly in some aspects so
the Podilizer preprint might be worth a read [3].

A Git checkout is necessary to bootstrap the usage of Termite.

Listing 9: Obtaining Termite
git clone https :// github.com/serviceprototypinglab/termite

Then, follow the essential README file instructions on compiling the Ter-
mite library and integrating it into the Maven build system of the application
whose methods should be cloud-hosted. A first step is to try the tool on the
example application. Notice that in addition to Maven’s INFO lines, it will
output TERMITE lines which signal that the handler for the annoations has
been triggered. For each annotated method, Termite will compile and deploy
to AWS Lambda. To deploy to a Lambda-compatible service, the example will
have to be modified as described below.

Listing 10: Termite compilation
cd termite
mvn clean install
cd example
mvn clean install

4

To use Termite for your Java code, import it as a library or run it as stand-
alone tool as before and make use of the annotations. Termite offers a @Lambda
method annotation which may optionally take parameters to configure the exe-
cution behaviour as well as the endpoint to deploy to. The following code serves
as example.

Listing 11: Termite code example
package app;

import ch.zhaw.splab.podilizerproc.annotations .*;

public class Test MyApp {
public static void main(String [] args){

mycloudmethod ();
}
@Lambda(timeOut = 120, memorySize = 1024, endPoint = "

http :// localhost :10000")
public static void mycloudmethod(String in){

System.out.println("mycloudmethod:" + in);
}

}

The endpoint specification makes it possible to deploy to for instance Snafu;
see Section 3. Please note however that Termite generates quite complex Java
packages which are not entirely understood by Snafu. Hence, the deployment
will work but execution will most likely not.

3 Controlled Execution: Using Snafu
Snafu runs your functions in code files. A preprint is available [1] as are studies
about its runtime characteristics [4].

Start off with obtaining Snafu from its source repository, or for potentially
outdated versions from the Python Package Index or Docker Hub. The following
instructions assume an installation from the repository.

Listing 12: Obtaining Snafu
git clone https :// github.com/serviceprototypinglab/snafu
cd snafu
pip install snafu
docker run -ti jszhaw/snafu bash
... for more installation options (OpenShift , Kubernetes ,

Helm) see README

You can directly run Snafu without any configuration. It ships with a num-
ber of default functions in various languages. Notice how on first startup, the
interpreters for non-scripted functions are compiled first. This means that while
the first startup is a bit slow, the second and subsequent ones are quote fast

5

(Listing 13). The behaviour depends on what is installed on the system. Spo-
radic error messages may appear for missing dependencies (e.g. Java compiler)
but can be ignored unless the specific functions are needed.

Listing 13: Running Snafu
./snafu
type Ctrl+D
./snafu # everything compiled
type Ctrl+D again

Snafu chooses one parser and one executor per function implementation by
default but this can be overridden. Now choose the C executor, which is any-
way the default, to demonstrate the behaviour. Select the sample C Fibonacci
function and execute it with a low parameter n (Listing 14).

Listing 14: Executing a C function
./snafu -e c
type function: fib_so.handler
type argument: 10
type Ctrl+D

Now remember your previous example functions used with Lambada. Obvi-
ously, Snafu can interpret the original file as well by performing some (limited)
FaaSification on its own. Execute Snafu on this file and explore the execution
(Listing 15).

Listing 15: Executing a Python function
./snafu .../path -to-lambada/temperature.py

For advanced FaaSification, the Lambada parser can be used which requires
Lambada to be installed as Python module. In this case, the classes are trans-
formed as well.

Listing 16: Executing a Python function with Lambada parser
./snafu -f lambada .../path -to -lambada/temperature.py

For testing functions prior to deployment to commercial cloud providers
(AWS, IBM, Google etc.) it is convenient to use Snafu’s control plane mode.
In this mode, the default calling convention is the same as in AWS Lambda
(Listing 17) although the behaviour can be tuned to be closer aligned by adding
authentication and container isolation (-a aws -e docker) which may require
additional configuration upfront.

Listing 17: Using the control plane
./snafu -control .../path -to-lambada/temperature.py
notice how no methods are selectable
type Ctrl+D

6

add to source: def lambda_handler(event , context):return
str(temperature ())

& run snafu -control command again
open a second terminal , and run:
aws --endpoint -url http :// localhost :10000 lambda invoke --

function -name test.lambda_handler --payload ’{" event":
""}’ /tmp/_out

cat /tmp/_out

4 Controlled Execution: Using OpenFaaS
Note: OpenFaaS works on the basis of Docker Swarm.

Listing 18: OpenFaaS script
preparation
docker swarm init
curl -sL cli.openfaas.com | sh
git clone https :// github.com/openfaas/faas
cd faas
./ deploy_stack.sh
cd ..
retrieve echo template function
./faas -cli template pull
./faas -cli new --lang python3 hello -openfaas
customise function as needed here
build + execute function
./faas -cli build -f hello -openfaas.yml
./faas -cli deploy -f hello -openfaas.yml
curl http ://127.0.0.1:8080/ function/hello -openfaas -d Test

5 Controlled Execution: Using Fission
Note: You will need to have Kubernetes installed with minikube + kubectl
+ helm for a local installation. Ensure that the minikube context is used by
kubectl. Furthermore, ensure that your system user is in the group docker.

Listing 19: Fission script
prepare for local installation
kubectl config use -context minikube
helm install --namespace fission https :// github.com/fission/

fission/releases/download /0.8.0/ fission -core -0.8.0. tgz
curl -Lo fission https :// github.com/fission/fission/releases

/download /0.8.0/ fission -cli -linux && chmod +x fission
initiate
./ fission env create --name python --image fission/python -

env

7

curl https ://raw.githubusercontent.com/fission/fission/
master/examples/python/hello.py > hello.py

explore & deploy
cat hello.py
./ fission function create --name hello --env python --code

hello.py
output: function ’hello’ created
./ fission route create --method GET --url /hello --function

hello
output: trigger ’35ad2fae -**** -**** -**** -679 d755fde8f ’

created
curl http://‘sudo minikube ip ‘:31314/ hello # ceased

working in new version
./ fission function test --name hello

6 Controlled Execution: Using OpenLambda (ten-
tative)

Listing 20: OpenLambda script
git clone https :// github.com/open -lambda/open -lambda
cd open -lambda
sudo apt -get install libpython2 .7-dev
sudo make
bin/admin new -cluster pyparis
returns lots of JSON
bin/admin workers -cluster pyparis
output: Started worker: pid ...
bin/admin status -cluster pyparis
output: Worker Pings: ...
cat quickstart/handlers/hello/lambda_func.py
... minimal Lambda -signature Python function
cp -r quickstart/handlers/hello pyparis/registry
curl -X POST localhost :8080/ runLambda/hello -d ’{"name": "

Alice"}’
-> permission denied !?

7 Outsourced Execution: Using AWS Lambda
The Lambda service provided by Amazon Web Services allows for invoking func-
tion instances with various memory allocations between 128 MB and 1536 MB
and with memory-proportional performance.

The prerequisite for using Lambda is an AWS account. You will need to
register with a credit card here: https://aws.amazon.com/de/lambda/.

8

Once registered, create a new function via the graphical web interface or
via the command-line interface. This tutorial guides through the second path.
Ensure to have the command-line interface (AWS CLI) installed and properly
configured for your account; verify the instructions on https://aws.amazon.
com/de/cli/ if in doubt.

Then, write your first function. Note that depending on the programming
language, Lambda requires a certain convention for functions, methods and
parameters. The following example shows a Python function which adheres to
the conventions.

Listing 21: AWS Lambda function example
def lambda_handler(event , context):

return 99

Save the function to a Python file. Assuming its name is first.py, the
following command uploads it to Lambda. For Python, both version 2.7 and
3.6 are available.

Listing 22: AWS Lambda function upload
zip first.zip first.py
role=‘aws sts get -caller -identity --output text --query ’

Account ’‘
aws lambda create -function --function -name First --

description ’my first function ’ --runtime ’python2 .7’ --
role $role --handler ’first.lambda_handler ’ --zip -file ’
fileb :// first.zip’

Afterwards, the function execution can be tested.

Listing 23: AWS Lambda function execution
aws lambda invoke --function -name First --payload ’{}’

_logfile
cat _logfile
rm _logfile

8 Outsourced Execution: Using IBM Cloud Func-
tions

Based on Apache OpenWhisk (formerly IBM OpenWhisk), the Cloud Functions
service is the IBM Cloud (formerly Bluemix)-integrated facility to execute func-
tions offered by IBM.

The prerequisite for using Cloud Functions is an IBM Cloud account which
is an IBMid account. A 30-day trial is offered without requiring a credit card.
The registration is possible here: https://console-regional.ng.bluemix.
net/registration/?target=%2Fopenwhisk.

9

Alternatively, an existing account can send invites for collaborators by e-
mail. Accept the invite, sign up with your full name and a password, and sign
in. Select the Offerings menu and choose Functions. You may only have access
to a space in a certain region and therefore need to change the region setting first.
Afterwards, you can choose Create Action to get started. Example: Location -
Germany, space - ICDCS18-Tutorial.

In IBM Cloud Functions, functions can be deployed and executed program-
matically or through the graphical web interface. Functions adhere to the con-
ventions set by OpenWhisk. A typical function may look like the following
example given in Python 3:

Listing 24: OpenWhisk Python function example
def main(dictionary):

return {"response": 99}

Listing 25: OpenWhisk JavaScript function example
function main(input) {

return {"upper": input["text"]. toUpperCase (),
"lower": input["text"]. toLowerCase ()}

}

Using the bx or wsk tools, OpenWhisk as offered by IBM Cloud Functions
can be used programmatically while vendor support for the latter has ceased in
March 2018, effectively diverging from stock OpenWhisk tooling in particular
for the login. The wsk tool can still be used after login.

Listing 26: Working with OpenWhisk
Installation of bx tool and login
wget https :// clis.ng.bluemix.net/download/bluemix -cli/latest

/linux64
tar xvf linux64
cd Bluemix_CLI/ && ./ install_bluemix_cli
bx plugin install cloud -functions -r Bluemix
bx login -a api.eu-de.bluemix.net -o "ZHAW ISPROT" -s "

ICDCS18 -Tutorial"
fill out e-mail and password , check for OK and system

information
bx wsk action invoke /whisk.system/utils/echo -p message

hello --result
Installation of wsk tool
wget https :// github.com/apache/incubator -openwhisk -cli/

releases/download/latest/OpenWhisk_CLI -latest -linux -amd64
.tgz

tar xf OpenWhisk_CLI -latest -linux -amd64.tgz
./wsk action invoke /whisk.system/utils/echo -p message

hello --result

10

References
[1] J. Spillner. Snafu: Function-as-a-Service (FaaS) Runtime Design and Im-

plementation. arχiv:1703.07562, March 2017.

[2] J. Spillner. Transformation of Python Applications into Function-as-a-
Service Deployments. arχiv:1705.08169, May 2017.

[3] J. Spillner and S. Dorodko. Java Code Analysis and Transformation into
AWS Lambda Functions. arχiv:1702.05510, February 2017.

[4] J. Spillner, C. Mateos, and D. A. Monge. FaaSter, Better, Cheaper: The
Prospect of Serverless Scientific Computing and HPC. In 4th Latin American
Conference on High Performance Computing (CARLA), September 2017. To
appear.

11

