CONICET
Wt |
\X

18?3
National University of Comahue, National Scientific and Technical
Patagonia, Argentina Research Council, Argentina

‘:'\h("nll‘{!

c)} !

P

“\?E R'?L')

&

Politecnico di Milano, Italy
DEEPSe Group, DEIB

Towards the Serverless Continuum

Martin Garriga®
martin.garriga@polimi.it

*In collaboration with Luciano Baresi, Sam Guinea
Danilo Filgueira and Giovanni Quattrocchi

About me

)
o A

e, e].Qgrie]_yplgn_et,’.icécjm_/érg'eﬁi}i"ﬁé}’:patagonia

Born and raised (and studied!) in Neuquen, Patagonia, Argentina

Postdoc research fellow @ Politecnico Di Milano, Italy since 2016

Roadmap

-> Problem
Pushing the boundaries of computation offloading
=> Background
Continuum?? Serverless??
=> Proposal
A Unified Model for the Mobile-Edge-Cloud Continuum
-> Evaluation

-> Final Remarks & Future Work

Problem

Cloud

- multiple hops away

- high network latency
+ ‘unlimited’ resources
+ virtualization and
containerization

Cloud Infrastructure

pre
& docker
!’ W ‘

Core Network e

(Mobile) Edge
Infrastructure
= (ng)
A
1
1
\ 4

Mobile Edge

+ single or few hops away
+ low network latency

- limited resources

Mobile ‘prosumers’

- constrained resources
- high processing latency
- battery limitation

CONTINUUM
Computing power
Networking latency

Offloading should be...

e Dynamic

e Transparent
e QoS-Aware
[

Problem

Cloud Datacenter

Horizontal Scaling

Backend applications deployed in virtual machines
Works well in cloud infrastructure

Problem

e —_———— e — — —

! Edge Infrastructure N

VM VM VM

| Limited scaling

Backend applications deployed in virtual machines
Fail to scale in Edge infrastructure

Background

Example: Mobile-Edge-Cloud Continuum for Smart Cities
Augmented Reality app --- Autonomous Vehicles

cloud providers

\ ' Base Station "\ Hotel -AV % Stadium $aeon
(mobile-edge) A (local-edge) (local-edge) m b= (local-edge)

Background

e Serverless Architecture
o Emerged as an alternative computing model for cloud computing

e Function as a Service (FaaS)

o Programming/Execution/Deployment model in a serverless architecture
o There is no need for preallocation of resources
s Resources are shared and managed by a platform
o Functions can be exposed as RESTful services
o Enables pay-per-use billing model
o More elastic and reactive than scaling virtual machines and containers
s Multiple instances of functions
s Functions can be quickly instantiated

e No ‘Free Lunch’
o Functions have to be stateless by definition

Background

e Some FaaS vendors

Amazon Google Microsoft IBM/Apache
Lambda Cloud Azure Openwhisk

Functions Functions Functions Actions

Background
‘ APACHE o
~ OpenWhisk

Invoker Invoker (8 Invoker

&

&

Proposal

CONTINUUM

Cloud Infrastructure

(Mobile) Edge
Infrastructure

X 5

-
o
T
e —

Clients

Computing power
Networking latency

Cloud

- multiple hops away
- high network latency
- ‘unlimited’ resources
- virtualization and
containerization

+ FaaS

Mobile Edge
- single or few hops away
- low network latency

- limited resources
+ FaaS

Mobile ‘prosumers’

- constrained resources
- high processing latency
- battery limitation

+ FaaS

Proposal

Entering the Mobile-Edge-Cloud Continuum

/ Mobile Device \ conventional cloud computing

Client Application
. , _ Cloud laaS
client-side logic
local persistence server-side logic
user interfaces persistence
o e m iyttt rte= gt Barmthspl byttt -
I ; ; .
I Mobile Domain Edge Domains Cloud Domains
. ,
| stateless function(s) “ stateless function(s) stateless function(s) ‘
: [dependencies] | [dependencies] [dependencies]

computing continuum

Applications are composed of:
Microservices (uS) provided by mobile, edge, and cloud domains
Conventional components that run on the mobile device + cloud services

Proposal

 —_———— e —— — — — —

/ MEC Server

@ Stateless Function

A

Vertical Scaling

\l

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
/

A FaaS architecture copes with the resource limitations of
Edge infrastructure by allowing multiple instances of
functions to scale vertically

Proposal

A3-E, a model for supporting efficient and scalable
placement of microservices along the continuum

— APP identification
« p-service identified

« p-service acquired
« p-service denied

« p-service deallocated
— client arrived

AWARENESS ACQUISITION ALLOCATION ENGAGEMENT
Advertisement Identification Self-management loop Provisioning
« domain identification | — p-service identified — p-service acquired — p-service allocated
Discovery Download & Installation « p-service allocated — p-service deallocated

— p-service request
«— p-service response

— domain identification
«— domain found

«— domain lost
Advertisement

« client identification

/MOBILE MlDDLEAHE\ /DOMAIN MANAGER\

— domain found

— domain lost

— p-service acquired
— p-service denied
«— domain confirmed
«— domain denied

— domain confirmed

— domain denied

— p-service allocated
— p-service deallocated
« domain changed

« client arrived — client left
« client left
Discovery Identification Self-management loop Invocation

— domain changed
— C-request arrived
« p-service request
— P-service response
« C-request reply

Satisfaction of application requirements (latency, battery, service availability)

Resource preservation (of mobile device and edge nodes)

Clients and domains take part in the automated and opportunistic placement decision

Proposal

Awareness

AWARENESS

Advertisement

«— domain identification
Discovery

— APP identification

« p-service identified
« client arrived

« client left

GOBILE MIDDLEARE\ /DOMAIN MANAGER\

Discovery

— domain identification
«— domain found

«— domain lost
Advertisement

« client identification

Mutual client/domain discovery

Allows to alleviate cold-starts typical in FaaS
(by enabling the following activities...)

Proposal

Acquisition

ACQUISITION

Identification

— p-service identified
Download & Installation
« p-service acquired

« p-service denied

ﬁAOBILE MIDDLEARE\ DOMAIN MANAGER\

Identification

— domain found

— domain lost

— p-service acquired
— p-service denied
«— domain confirmed
«— domain denied

Automated download and installation
of microservices’ artifacts

Eases OPS by means of a pull-based
policy

So far, FaaS platforms offer a
push-based one

Proposal

Allocation

Actual deployment of microservices to
a certain domain

Existing FaaS solutions keep certain #
of containers warm after a first request

A3-E features a self-management loop
to approximate the amount of
(pre)allocated resources:

Service latency
of instances
of requests

of clients

ALLOCATION

Self-management loop
— p-service acquired

« p-service allocated
« p-service deallocated
— client arrived

— client left

ﬁAOBILE MIDDLEARE\ DOMAIN MANAGEF{\

Self-management loop
— domain confirmed

— domain denied

— p-service allocated
— p-service deallocated
« domain changed

Proposal

Engagement

And finally... actual invocation of microservices!

ENGAGEMENT

As usual through RESTful interfaces to the functions

Provisioning

— p-service allocated
— p-service deallocated
— p-service request

«— p-service response

ﬂAOBILE MIDDLEARE\ DOMAIN MANAGER\

Invocation

— domain changed
— C-request arrived
« p-service request
— p-service response
« C-request reply

Evaluation -- Goals

e Latency and scalability of remote (cloud, edge) domains

e C(Client’s perspective: latency, battery

e Dynamic domain selection in the Continuum (mobile, cloud,
edge)

e Deployment overhead (acquisition and allocation)

Evaluation -- Sample App
4 add f ”ﬁl:."‘[

14 ™~ N "N =) ‘,-ﬂ\
S \.77 ! i
J

Mban Camadesd (s lan; Buomo o)
ASiana) iz (e cathvedral chorch of

M, ey, Oed caled o Sava
Wi Mt me (S My
Nazzeoth Bis e sex o' the
A hisheg of Mian, curtontly
Cardioal Angelo Siua

Augmented Reality Processing:
- Video capture -- Features extraction
- Rendering -- Features matching

Evaluation -- Simulated Architecture

/" Mobile Device ,/ Cellular Infrastructure\

MAR HTTP [captured frame]

over
Operating [B=EF[T
System

S g

. MEC Server

. Triggers
Http Server

Controller
Invoker Invoker

OO | |[O®

Storage

Operating System

Fig: Feature extraction and matching are offloaded as functions to
(Mobile) Edge servers hosting a serverless platform (Apache OpenWhisk)

Evaluation

Domain

Machine Resources

Execution Environment

Mobile

Samsung Galaxy S6 SM-G90, 3Gb RAM, 8x
Cortex CPU 2Ghz

Android 5.0.2 + Java Functions +
OpenCV

Local-edge-1

ubuntu/trusty64-2, 4x vCPUs, 4Gb RAM

OpenWhisk, 256 Mb/Action, Python
2.7 + OpenCV

Local-edge-2

ubuntu/trusty64-2, 8x vCPUs, 16Gb RAM

OpenWhisk, 256 Mb/Action, Python
2.7 + OpenCV

Cloud-FaaS N/A AWS Lambda, 256 Mb/Function,
Python 2.7 + OpenCV
Cloud-IaaS Auto Scaling Group with t2.micro instances + NodelJs 6.11 server + Python 2.7 +

Amazon Linux AMI 2017

OpenCv

Results

B Overhead

Latency and scalability of remote domains
2500

B swauoze

B swains
Bl vy
Bl |swenn e
B suenot

B suaioze
B [suaoot
B [swei0s8

B [suvapovy

W [suvaioz
W Jswaiot

@
-
c
g
Q
@
-

L1 Function Execution

I (510510 Z€

I <10 5T
I 520 §
I (510 v

B svanz
B svent

D 51310 b9

B 5o e
BN [sweno ot
B [swwen0s
R
N [suoio e
N [susi0 T
s g g g °
o~ — —
(spuooasiiw) aLuy

1

Local-edge

Local-edge-2

Cloud-laas

Cloud-Faas

Latency per call for different workloads

Results

e The edge-based solution performed better than the cloud-FaaS platform for
up to 16 simultaneous clients (32 regs per second)

e AWS lambda diminished latency with more calls!

o Less cold starts with higher stress levels of requests (higher reuse rates)

e A traditional Cloud-laaS solution does not scale at the required rate

e The Edge latency could be lower in a Mobile Edge scenario where the edge
server is located in the cellular infrastructure

Results

Client’s perspective: latency, battery

Dynamic domain selection
2000 Sequential Requests

3000

2500

2000

1500

1000

500

0

Cloud-FaaS

]
Local-edge Maobile-device All-domains

Total Execution Time

5.5

4.5

35

2.5

~n

15

-

0.5

Cloud-FaaS

Local-edge Mobile-device

Battery Consumption

All-domains

Results

e Total execution time, when using only the cloud is two times higher than
when using the continuum

e Using only the mobile lasted half the time, but used twice as much battery
(20%/hour) than the continuum

Results

Deployment overhead (acquisition and allocation)
Completely cold start situation
Compared against state-of-the-art framework Enorm

~&~--Enorm

-

-

- -
. -——
- v) 08w S| LE
e
P
-

. o—— -

w
o

N
o

Overhead (seconds)

=
o

Low Med High
Edge Node Load

Results

e Provisioning overhead of 12.5 seconds! (from nothing installed to response
delivered)

e Reduces burden of downloading, installing and deploying: up to 70% less
vs. a traditional container deployment

Final Remarks

e The Continuum is coming... with challenges!
o heterogeneity
o resource constraints @edge and mobile

e Serverless@edge can bridge both gaps at once!

o Unified FaaS model
o Optimizes use of limited resources
o Improved elasticity, low reaction time

Future Work & Open Directions

e Resource management along the continuum
o Low latency requirements
o dynamic workloads

e Decentralized placement and coordination
o (Coordination among several edge servers and cloud
o Device-to-device computation offloading

e Let’s see what 5G has to offer
o Bandwidth and throughput
o Fine-grained infrastructure...
o Edge servers at each block!
e And Much More! (Security, Reliability, Error handling,
Testing...)

Publications

Empowering Low-Latency Applications Through a
Serverless Edge Computing Architecture

ESOCC’17 Conference
https://link.springer.com/chapter/10.1007/978-3-319-67262-5_15

A Unified Model for the Mobile-Edge-Cloud Continuum
ACM Transactions on Internet Technology (to appear)
Ping me for a copy!

