
Zürcher Fachhochschule

Towards Quantifiable Boundaries for 

Elastic Horizontal Scaling of 

Microservices

Manuel Ramírez López <ramz@zhaw.ch> &

Josef Spillner <josef.spillner@zhaw.ch>

Service Prototyping Lab (blog.zhaw.ch/icclab)

Dec 5, 2017 | 6th CloudAM @ UCC, Austin, TX, USA



2

Motivation

Application...

... scaling:

accomodate more users / growing workload

desired: elasticity, rapidity

... auto-scaling:

rule-based scaling actions

↹ trade-offs: effort for rule definition, initial calibration, hotspots

... pre-scaling (our work):

determine initial combinatorial scaling

fixed-workload vs. variable workload



3

Model

Microservices composition - three classes of services



4

Model

Scale cube (Abbott and Fisher, 2015)

Independently deployable microservices → Y axis (Hasselbring, 2016)



5

Assumntions

Application architecture

following a microservice

design
● stateful CRUD service
● replica count per service

Scenario implementation
● online document 

management 

application
● RESTful Python service, 

MongoDB

Scale cube relation
● X axis: horizontal 

replication
● Z axis: data partitions



6

Assumntions

Nonlinear constrained horizontal scaling behaviour on X axis according to 

following graph



7

Research Question and Annroach

Question:

»Can the best combination of replicas for a given application and workload 

be calculated for performance-critical and cost-constrained settings?«

Approach:

● Formalisation of application structure, task, workload, environment + 

scaling constraints
● Combinations of scaling factors, optimal result vectors

application workload optimalityx x



8

Method: Ontimality

What is the “best“ combination?

TG: Type graph

IG: Instance graph - replicas per microservice - 3x IG
O



9

Method: Formalisation

Mathematical model: m-dimensional makespan matrix

(2 out of m dimensions shown conforming scenario)

where:
● m - # of microservices
● n - # of replicas per microservice

● stateful services: partitioning scheme (e.g. per tenant)
● e - experiment (task/workload combination)
● µ - makespan



10

Method: Ontimal Factors Formula

Three approaches
● unconstrained (baseline)
● constrained
● relaxed-constrained (with rate)

cost: resource cost or monetary cost

I: set of indices of M



11

Method: Comnlexity Reduction

Sparse matrices/arrays due to not fully connected microservices (TG level)
● representation: bi-directional disconnected graph
● vertices = microservices
● edges = connections (communication links)

Transformation: set of fully connected graphs

(caveat: not validated, relates to patterns - e.g. sidecar)



12

Imnlementation: Factor Injection

Integration with microservice management platforms
● e.g. container schedulers (Docker Compose, Kubernetes, ...)
● using placeholders in composition templates

Example as used in experiment:

Kubernetes 1.5 deployment @ Google Cloud Platform (GCP - GCE)

{
 "kind": "Deployment",
 "apiVersion": "extensions/v1beta1",
 "metadata": {
  "name": "MICROSERVICE",
 },
 "spec": {
  "replicas": REPLICAS,
   "spec": {
    "containers": [
     {
      "name": "MICROSERVICEIMPL",
      "image": "NAMESPACE/CONTAINER:1.1",
...



13

Imnlementation: Factor Injection

Verification through graphical user interface



14

Results

Stateless microservice: “arkisdocument“, API to search in documents
● from 1 to 11 replicas

Stateful microservice “mongodb“, 300 documents per tenant
● from 1 to 2 replicas

Workload generator/test microservice, not managed, not scaled

Cost/performance ratio

is not linear.



15

Outlook: Variable Workloads

K experiments with maximum fulfilment of cost/performance requirements

Intersection analysis



16

Summary

Contributions
● formalised application scaling determination (X + Z axes in scale cube 

with microservice composition as Y axis)
● testbed based on Docker containers in Kubernetes
● practical use to complement autoscaling
● scientific open notebook for future work

https://github.com/serviceprototypinglab/scalability-experiments 

Recent related work: «ThrottleBot - Performance without Insight» by 

Chang, Panda, Tsai, Wang, Shenker (arXiv:1711.00618)

«Microservices for Scalability» by Wilhelm Hasselbring, ICPE‘16 keynote


