

Cloud Applications: Less Guessing, more Planning and Knowing

Josef Spillner <josef.spillner@zhaw.ch> Service Prototyping Lab (blog.zhaw.ch/icclab)

23.05.2016 | Universidade de Coimbra

Cruise Ships History

England 1842: $P&O \rightarrow Postship$ with spare capacity in the Med Germany 1888: Augusta Victoria \rightarrow Liner in summer, cruiser in winter time [Klu01]

Winterthur Computer History

Remington Rand (pre-Unisys), Swiss daughter company Mithra [Bru11]:

- M9 (alias Z9), designed around 1953-1954
- using Stibitz coding instead of regular BCD: easier handling of negatives
- users: Winterthur city administration(*), machine producer Rieter in Winterthur, Swissair, Zurich cantonal electricity provider, & many more
- business model:
 - buy
 - lease/rent (with time-based fee)
- (*) only one M9 left world-wide in Museum for Communication, Bern
 - installed in 1961 for computing of bills for utilities
 - using punch cards for input and output (no screen, no printer)

Winterthur Computer History

The M9: Cases and relays [Bru11]

Bringing it all together...

Capacity use: Augusta Victoria \rightarrow early "virtualisation" Business model: M9 e.g. in Winterthur \rightarrow early "PAYG" service model

- + scaling
- + on-demand provisioning
- risks
- = cloud computing infrastructure perspective

... and predicting the future

Fundamentals: resource services

- Compute
 - governed by Moore's Law (for transistors) [CuYo16]
- Networking
 - governed by Keck's Law (for optical fiber) [Hec16]
- Storage
 - governed by Kryder's Law? (for magnetic disks; not quite) [Ros14]

Services on top: not so straightforward - not just speed

Cloud Applications Perspective

Initial onboarding

Cloud Applications Perspective

Continuous operation and re-engineering

Planning and Knowing

A-priori safeguarding: design for risks/threats...

- failure / unavailability
- unpredictable popularity
- leaks / surveillance
- dependency changes and issues

A-posteriori knowledge

- monitoring
- event processing
- log file analysis
- incident detection

Novel Techniques

- Cloud-Native Applications
- Stealth Computing
- Active Service Management / Fault Injection

Technique: Cloud-Native Applications

Technique: Stealth Computing

SPL

Technique: Stealth Computing

Technique: Active Service Management

Existing tools for planning and knowing

- network simulators and emulators
- CloudSim [Buyya et al.]
- EMUSIM [Calheiros et al.] for performance
- Cloud Workflow Emulator [Senna et al.] for resources/performance

MC-EMU: Multi-Cloud Emulation

17

MC-EMU example: storage/availability/convergence

MC-EMU example: compute/popularity/spikes

(above) without failures (below) with induced failures in a CNA application

Service Prototyping Lab - Research

Service Prototyping Lab - Events

SPL

Conclusion

Service Prototyping Lab + Cloud Computing Lab

blog.zhaw.ch/icclab
github.com/serviceprototypinglab

Active Service Management research initiative

- → enforce predictable application behaviour
- \rightarrow designs, methods and tools

Sources

[Bru11] Herbert Bruderer: Konrad Zuse und die Schweiz. Abschnitt: Rechenlocher M9 for die Schweizer Remington Rand. ETH Zürich, Departement. Informatik, Professur für Informationstechnologie und Ausbildung, Juli 2011.

[Klu01] Arnold Kludas: Vergnügungsreisen zur See. Bd. 1: 1889-1939. Convent-Verlag Hamburg, ISBN 3-934613-21-7, S. 21-28, 2001.

[Hec16] Jeff Hecht: Great Leaps of Light. IEEE Spectrum, 53(2):24-48, February 2016.

[KuYo16] Michael A. Cusumano and David B. Yoffie: Technology Strategy and Management - Extrapolating from Moore's Law. CACM 01/16, pp. 33-35.

[Ros14] David Rosenthal: Talk at Seagate. DSHR's Blog, May 2014. (Analysis in The Register, November 2014.)

(Rosenthal's discussion of Kryder's Law @ UNESCO) http://www.theregister.co.uk/2014/11/10/kryders_law_of_ever_cheaper_storage_disproven/?page=2

