B> 24 2 &
m«..fvhwd\ WNVAV >
=D Wwwwﬂnv
)

sa G-
P 2 ¢
s HWWMNNW

w T

Sy Zats S CRRDNES 3)
R N
YIS ()
- 2’ .“.»,
3 B 3 PR
P)
; - ‘.
J\Nv R

x
Weyd) m

_._a :c___ NQ‘_. bt
A, E e M
iy W 2

K’M 0 ;
HVNATINAT Yhe N PO S 10 <oA%
Ay z.. s i
WO S
71.”#.# & .\.-\%\oN.Nl -

R 272

1557 &

Ry

* Serverless Delivery Hero, Original picture may be trademarked.

Service Prototyping Lab (blog.zhaw.ch/icclab)

Josef Spillner <josef.spillner@zhaw.ch>
Dec 21, 2017 | Vienna Software Seminar

Miniaturisation

meetup.com/FloridaGardeners japanese.alibaba.com

TINY

ToCS Vol .4

Prospects of Serverless Applications

Industry: DEPOT meta-model

Academia:

catching
up...

Deployment model
Execution model
Programming model
Orchestration model
Tariff model

Example - ...

— control plane APIs, gateways, limits
—isolation, state, memory/time limits

- function signatures, implementations
— Step Functions, Composer...

— pay-per-call, -per-load, ...

ss=decentralised

Our Function-as-a-Service Research

Academia claims Global claims

1st code
transformation
tools

1st control plane
analysis

1st HPC/SC

analysis 1st funct
o st function
1st function in marketplace
production at uni

1st tutorial
at conference 1st multi-provider
migration

2nd runtime
(after OpenLambda ¥)

LAB"~

Function-as-a-Service Delivery

But: What about seftaare service delivery?
* sensu stricto: serving the clients

* according to message exchange patterns
* sensu lato: entire end-to-end pipeline from idea to dev to ops to usage

/ |CP| Y

K client

Gate - _

Function-as-a-Service Delivery

Mostly solved problems

* Deployment via SLFW, Composeless or provider-specific tools
(awscli, wsk, gcloud, ...)

* Aggregate-monitored execution

Open issues
* Real-time insight
* Debugging support
* Google Stackdriver? AWS X-Ray? RLY?
* Automated code transformation and fitting

Proposal -
“DevOps-style Tracing, Profiling and Autotuning of Cloud Functions®

AB”

Using Snafu‘s python3-tracing executor *

10°
B waste_cpu
B connect_tcp
open file
B recursion
10'

Additional Execution Time as a Percentage

el .ol

Full Tracing Execution Time Network Connections Performance Metrics Disk Access

* contributed by L. Fernandez-Garces & Bernard Jollans @ KTH

Profiling

Application topology and behaviour
* precise, via execution traces
* heuristic, via e.g. Peddycord's algorithm

Insights through visualisation
* flame graphs (B. Gregg USENIX ‘13/17)

tep_sendmsg

sock alo_ write

do_syne_write

vis_write

sys_write

system_call_fastpath

[unknown]

sun/nio/ch/FlleDispatcherImpl: writeQ
sun/nio/ch/SocketChannellmpl:.write

o/ netty/channel/nio/AbstractNioByteChannel:.doWrite

Autotuning

Computers are dumb but fast + programmable!

Rules (disclaimer: not thought through)

* timeout reached - redeploy with different decomposition granularity, use
worm functions (state handover), [when applicable]
redeploy with more memory

* out of memory — implement map-reduce schemes, recluster local private

functions, redeploy with more memory

* data latency issues — use cache, narrow gap (edge, copy)

* dependency service unavailable — notify

Automation + constructive developer naotification

i)
b
AE

Missing
dependency
Slowness

Undeterministic

FATE
__

Faas environment

Instance
Application Application
engineer user

Ir1_5|ghjc . Feedback Improved
Visuallsation Autotunin experience
Debugging/Profiling Tools g P

: : Deployed Function Application
Function

Fec @,
‘D'

R~
AB

Triggers

]

Hot deployment
Canary testing
Step/Breakpoint
execution

M

Maonitor

j Triggers
Function metrics:

invacation count+time,
throttling, faults, variables

E K

Execute K-rules

Analyse

A

Plan

Recombination of
function clusters

'TMD ry reconfiguratio
Triggers

>
, >
Stacktraces Triggers
Profiles j)
Anomalies over time
>

1 FaaS Debugging, *

Profiling and
Autotuning

Catalogue

]

Management
functions

Rapid Service Prototyping

1) Programming
using FaaSification (decomposition): shallow, medium, deep

2) Provisioning
through commercial clouds
big 4
through community clouds
GuiFi
through ad-hoc networks (device, meshes)

3) Autotuning

4) Service Delivery
S) I

_6) Profit!

@@
AB~

12

Closing

Cloud functions are

- the sincerest form of microservices (“stateless nanoservices")

- great for education, link to programming

- practically free for small to medium usage (but you pay for state)

Negatives
- manual programming and debugging still tedious at scale
- rapid service prototyping still cumbersome

Upcoming Events:

Feb 2018: Serverless @ Swiss Python Summit
May 2018: Serverless @ DevOpsDays Zurich-Winterthur (CfP still open)
Dec 2018: Serverless symposium @ 11" IEEE/ACM UCC/BDCAT Zurich

ok https://blog.zhaw.ch/icclab/tag/faas/

13

