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Abstract. The adoption of cloud computing facilities and programming
models differs vastly between different application domains. Scalable web
applications, low-latency mobile backends and on-demand provisioned
databases are typical cases for which cloud services on the platform
or infrastructure level exist and are convincing when considering tech-
nical and economical arguments. Applications with specific processing
demands, including high-performance computing, high-throughput com-
puting and certain flavours of scientific computing, have historically re-
quired special configurations such as compute- or memory-optimised vir-
tual machine instances. With the rise of function-level compute instances
through Function-as-a-Service (FaaS) models, the fitness of generic con-
figurations needs to be re-evaluated for these applications. We analyse
several demanding computing tasks with regards to how FaaS models
compare against conventional monolithic algorithm execution. Beside the
comparison, we contribute a refined FaaSification process for legacy soft-
ware and provide a roadmap for future work.

1 Research Direction

The ability to turn programmed functions or methods into ready-to-use cloud
services is leading to a seemingly serverless development and deployment expe-
rience for application software engineers [1]. Without the necessity to allocate
resources beforehand, prototyping new features and workflows becomes faster
and more convenient to application service providers. These advantages have
given boost to an industry trend consequently called Serverless Computing.
The more precise, almost overlapping term in accordance with Everything-as-
a-Service (XaaS) cloud computing taxonomies is Function-as-a-Service (FaaS)
[4]. In the FaaS layer, functions, either on the programming language level or
as abstract concept around binary implementations, are executed synchronously



or asynchronously through multi-protocol triggers. Function instances are provi-
sioned on demand through coldstart or warmstart of the implementation in con-
junction with an associated configuration in few milliseconds, elastically scaled
as needed, and charged per invocation and per product of period of time and
resource usage, leading to an almost perfect pay-as-you-go utility pricing model
[11]. FaaS is gaining traction primarily in three areas. First, in Internet-of-Things
applications where connected devices emit data sporadically. Second, for web
applications with light-weight backend tasks. Third, as glue code between other
cloud computing services. In contrast to the industrial popularity, no work is
known to us which explores its potential for scientific and high-performance
computing applications with more demanding execution requirements.

From a cloud economics and strategy perspective, FaaS is a refinement of the
platform layer (PaaS) with particular tools and interfaces. Yet from a software
engineering and deployment perspective, functions are complementing other
artefact types which are deployed into PaaS or underlying IaaS environments.
Fig. 1 explains this positioning within the layered IaaS, PaaS and SaaS service
classes, where the FaaS runtime itself is subsumed under runtime stacks. Per-
forming experimental or computational science research with FaaS implies that
the two roles shown, end user and application engineer, are adopted by a single
researcher or a team of researchers, which is the setting for our research.

Fig. 1. Positioning of FaaS in cloud application development

The necessity to conduct research on FaaS for further application domains
stems from the unique execution characteristics. Service instances are heuristi-
cally stateless, ephemeral, and furthermore limited in resource allotment and ex-
ecution time. They are moreover isolated from each other and from the function
management and control plane. In public commercial offerings, they are billed
in subsecond intervals and terminated after few minutes, but as with any cloud
application, private deployments are also possible. Hence, there is a trade-off be-
tween advantages and drawbacks which requires further analysis. For example,
existing parallelisation frameworks cannot easily be used at runtime as function
instances can only, in limited ways, invoke other functions without the ability to



configure their settings. Instead, any such parallelisation needs to be performed
before deployment with language-specific tools such as Pydron for Python [10] or
Calvert’s compiler for Java [3]. For resource- and time-demanding applications,
no special-purpose FaaS instances are offered by commercial cloud providers.
This is a surprising observation given the multitude of options in other cloud
compute services beyond general-purpose offerings, especially on the infrastruc-
ture level (IaaS). These include instance types optimised for data processing
(with latest-generation processors and programmable GPUs), for memory allo-
cation, and for non-volatile storage (with SSDs). Amazon Web Services (AWS)
alone offers 57 different instance types. Our work is therefore concerned with the
assessment of how current generic one-size-fits-all FaaS offerings handle scien-
tific computing workloads, whether the proliferation of specialised FaaS instance
types can be expected and how they would differ from commonly offered IaaS
instance types. In this paper, we contribute specifically (i) a refined view on
how software can be made fitting into special-purpose FaaS contexts with a high
degree of automation through a process named FaaSification, and (ii) concepts
and tools to execute such functions in constrained environments.

In the remainder of the paper, we first present background information
about FaaS runtimes, including our own prototypes which allow for provider-
independent evaluations. Subsequently, we present four domain-specific scien-
tific experiments conducted using FaaS to gain broad knowledge about resource
requirements beyond general-purpose instances. We summarise the findings and
reason about the implications for future scientific computing infrastructures.

2 Background on Function-as-a-Service

2.1 Programming Models and Runtimes

The characteristics of function execution depend primarily on the FaaS runtime
in use. There are broadly three categories of runtimes:

1. Proprietary commercial services, such as AWS Lambda, Google Cloud Func-
tions, Azure Functions and Oracle Functions.

2. Open source alternatives with almost matching interfaces and functionality,
such as Docker-LambCI, Effe, Google Cloud Functions Emulator and Open-
Lambda [6], some of which focus on local testing rather than operation.

3. Distinct open source implementations with unique designs, such as Apache
OpenWhisk, Kubeless, IronFunctions and Fission, some of which are also
available as commercial services, for instance IBM Bluemix OpenWhisk [5].
The uniqueness is a consequence of the integration with other cloud stacks
(Kubernetes, OpenStack), the availability of web and command-line inter-
faces, the set of triggers and the level of isolation in multi-tenant operation
scenarios, which is often achieved through containers.

In addition, due to the often non-trivial configuration of these services, a
number of mostly service-specific abstraction frameworks have become popular



among developers, such as PyWren, Chalice, Zappa, Apex and the Serverless
Framework [8]. The frameworks and runtimes differ in their support for pro-
gramming languages, but also in the function signatures, parameters and return
values. Hence, a comparison of the entire set of offerings requires a baseline.

The research in this paper is congruously conducted with the mentioned com-
mercial FaaS providers as well as with our open-source FaaS tool Snafu which
allows for managing, executing and testing functions across provider-specific
interfaces [14]. The service ecosystem relationship between Snafu and the com-
mercial FaaS providers is shown in Fig. 2. Snafu is able to import services from
three providers (AWS Lambda, IBM Bluemix OpenWhisk, Google Cloud Func-
tions) and furthermore offers a compatible control plane to all three of them in
its current implementation version. At its core, it contains a modular runtime en-
vironment with prototypical maturity for functions implemented in JavaScript,
Java, Python and C. Most importantly, it enables repeatable research as it can
be deployed as a container, in a virtual machine or on a bare metal workstation.
Notably absent from the categories above are FaaS offerings in e-science infras-
tructures and research clouds, despite the programming model resembling widely
used job submission systems. We expect our practical research contributions to
overcome this restriction in a vendor-independent manner. Snafu, for instance,
is already available as an alpha-version launch profile in the CloudLab testbed
federated across several U.S. installations with a total capacity of almost 15000
cores [12], as well as in EGI’s federated cloud across Europe.

Fig. 2. Snafu and its ecosystem and tooling

Using Snafu, it is possible to adhere to the diverse programming conven-
tions and execution conditions at commercial services while at the same time
controlling and lifting the execution restrictions as necessary. In particular, it is
possible to define memory-optimised, storage-optimised and compute-optimised
execution profiles which serve to conduct the anticipated research on generic
(general-purpose) versus specialised (special-purpose) cloud offerings for scien-



tific computing. Snafu can execute in single process mode as well as in a load-
balancing setup where each request is forwarded by the master instance to a
slave instance which in turn executes the function natively, through a language-
specific interpreter or through a container. Table 1 summarises the features of
selected FaaS runtimes.

Table 1. FaaS runtimes and their features

Runtime Languages Programming model Import/Export

AWS Lambda JavaScript, Python,
Java, C#

Lambda –

Google Cloud Func-
tions

JavaScript Cloud Functions –

IBM Bluemix Open-
Whisk

JavaScript, Python,
Swift, Docker

OpenWhisk –

Fission JavaScript, Python,
Go, C#, PHP

Fission –

Kubeless JavaScript, Python Kubeless –
Snafu JavaScript, Python,

C, Java
Lambda, Open-
Whisk, Cloud Func-
tions

Lambda, Open-
Whisk, Cloud Func-
tions, Fission

2.2 Providers and Performance

Commercial FaaS offerings differ not only in their programming conventions,
but also vastly by performance, cost and the combined utility defined as cost-
duration product. Fig. 3 informs about the benchmark of a compute-intensive
function, fib(38), implemented in Python as a portable hosted function which
runs on bare metal as well as in AWS Lambda, IBM Bluemix OpenWhisk and
Azure Functions. The performance in the FaaS environments will unlikely be
faster than an approximate performance barrier indicated by the benchmark’s
runtime with the fastest widely available processor cores, exemplified by a 9.5 s
execution time on a recent Intel Xeon E5-2660 v3 (Haswell) with 2.6 GHz and
8.5 s on an Intel i7-4800MQ with 2.7 GHz. Conversely, it is often much slower,
and the offerings do not allow for explicitly paying more for better performance.
The rather odd (although even) number 38 has thus been chosen so that on the
slowest commercial FaaS offering, Lambda with 128 MB instances, the function
terminates successfully before the obligatory five minutes timeout.

Lambda performs proportional to the memory assignment, thus leading to
a constant price. OpenWhisk raises the price proportional to the memory as-
signment while keeping a constant performance. In contrast, Azure measures
the memory use but does not allow for its configuration. Finally, while Google
Cloud Functions do not appear in the same diagram due to its limitation to
JavaScript, its pricing model almost resembles the one of Lambda although the
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high-memory instances performance decreases in relation. The compute-intensive
recursive benchmark implementation is shown in Listing 1.1. Functions with
other characteristics will be analysed in detail in the next section.

Listing 1.1. Compute-intensive portable hosted Fibonacci function in Python

import time
def fib(x):

if x in (1, 2):
return 1

return fib(x - 1) + fib(x - 2) # recursion
# AWS Lambda entry point
def lambda_handler(event , context):

return fib (38)
# IBM Bluemix OpenWhisk entry point
def main(event):

return {’ret’: fib (38)}
# Microsoft Azure entry point (could be conditional)
import os
datain = open(os.environ[’req’]).read()
response = open(os.environ[’res’], ’w’)
response.write(str(fib (38)))
response.close()



3 Scientific Computing Experiments with Functions

In order to get a broad understanding of the feasibility and utility of FaaS models
for diverse computing tasks, four experiments are conducted to compare the
performance and other resource-related characteristics. The selected domains are
mathematics (calculation of π), computer graphics (face detection), cryptology
(password cracking) and meteorology (precipitation forecast). The first three
experiments are synthetic, while the fourth one uses FaaSification to analyse
an existing non-FaaS application. We will refer to the domain and function
execution characteristics to infer statements about the possible and desirable
degree of parallelisation without resource contention.

3.1 Mathematics: Calculation of π

A common formula to calculate arbitrary digits of π in parallel sequences for un-
limited precision is Baily-Borwein-Plouffe (BBP). The implementation in Python
uses theDecimal type explicitly due to the otherwise limited precision of built-in
floating point numbers, which contrasts the unlimited digits of built-in integer
numbers. The experiment is set up to calculate 2000 digits with a theoretic
precision of 10000 digits.

Fig. 4 compares the BBP calculation performance between the native Python 3
execution, the optimised (JiT-compiled) PyPy 3 execution, as well as the FaaS
equivalents with in-process and out-of-process parallelisation, or multi-threading
and multi-processing, respectively.
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Fig. 5. Comparison of BBP(2000/2500) implementation performance with Python 2.7

Fig. 5 shows the equivalent performance measurements when running all im-
plementations with Python 2. While this version is in maintenance mode and
any development of the language and libraries will cease around the year 2020,
it is still widely used, most prominently in the AWS Lambda service which is
one of the few commercial FaaS services offering a native Python runtime. An
interesting observation is that the programming language version matters. While
PyPy 3 scales much better than the corresponding CPython implementation for
a number of threads equal to or larger than the number of physical cores, PyPy 2
shows no such behaviour. In both cases, an external out-of-process function ex-
ecution or hosted function execution is faster despite network transmission, due
to overcoming multi-threading restrictions in the Python interpreters. Conse-
quently, using compute-optimised FaaS is beneficial from a performance point
of view when multi-processing, especially at scale, is not an option.

3.2 Computer Graphics: Face Detection

Face detection and recognition have become widely used techniques in social
networks, robotics and photo management applications, but also in surveillance
networks. The OpenCV library is among the commonly used tools to perform
face detection and mark or extract the corresponding sections in photos. Fig. 6
shows an example of a person’s face detected and marked by OpenCV in a lake
scenery photo. This experiment performs the same detection and marking on a
large number of photos.

A reference dataset with faces is provided by Faces in the Wild [2] which
serves as useful input for input-output-centric file processing. The dataset con-
tains 30281 images with a total size of 1.4 GB.



Fig. 6. Face detection and marking in photos using OpenCV with Python 2.7

As OpenCV is not yet widely available for Python 3, the implementation is
based on Python 2. Fig. 7 shows the performance measurements for the function
of the face detection using the public dataset again using pure local execution as
well as function execution in Snafu and Lambda. Due to the I/O-centric nature
of the function, the Lambda performance lags significantly and only becomes
competitive when 19 or more threads are used. With in-function parallelisation,
this effect can be remedied so that Lambda already executes faster with 10
threads or more. Slower Lambda functions are furthermore forcibly terminated
due to reaching the timeout barrier.
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The I/O lag in Lambda results from the use of the S3 object storage service
compared to direct file system access in the other cases. This discrepancy makes
evident the need for research tools beyond just the FaaS execution, as functions
are often interlocked with additional cloud services. First prototypes such as
the Atlassian LocalStack which simulates AWS services are already available [7].
Furthermore, the latency could be reduced by deploying function instance-affine
local storage, preferably in memory, a storage-optimised facility not yet offered
commercially by any of the FaaS providers.

3.3 Cryptology: Password Cracking

Digital forensics tools include functionality to crack passwords based on leaked
or otherwise published hashes. Research on secure hashes ensures that only a
brute-force attempt to crack them will succeed. Parallelisation and map-reduce
operations are helpful to speed up the process.

The associated experiment consists of 100 SHA256-hashed passwords of up
to 3 characters for which all possible combinations are tried in a comparison.
The implementation makes use of two layers of parallelisation: Conventional
parallel processing of up to 10 workers dividing the passwords among them,
always returning a single result, and map-reduce processing of up to 10 mappers
dividing the character ranges per character, returning the first successful match.
The implementation in Python further makes use of the built-in concurrency
framework which provides a unified futures interface for multi-threading and
multi-processing. Due to the compute-centric algorithm and Python’s global
interpreter lock, the use of multi-threading does not lead to speed-ups. Hence,
multi-processing is compared with a multi-function mode called function futures
contributed by us which outsources the function and mapping calls to Lambda
similar to the processing mode of PyWren [8].
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Fig. 8 compares the local multi-processing execution and the multi-function
execution on Lambda. The Lambda setup consists of 512 MB of memory as-
signment to each function instance which affects the absolute performance. This
is why the z-axis (brightness scale) has been normalised between the graphs.
Comparing both results, the linear worker scaling is evidently more predictable
whereas the mapper scaling is not contributing due to the overhead compared
to the tiny processing spans of each mapper. Furthermore, the local system ex-
posed a bug in Python’s multi-processing code which led to some combinations
fail sometimes, any with 6 mappers fail consistently, and any with 9 mappers
resulting in a runtime almost twice as high as the preceding ones.

3.4 Meteorology: Precipitation Forecast

Weather forecasting is a typical use case for supercomputing environments. The
forecast of precipitation in particular relies on many different models, including
heuristic and fuzzy ones, which are parameterised with a multitude of vari-
ables and hyperparameters. However, while some forecasts run continuously,
specialised forecasts only need to be run at certain times at full scale with high
re-use factor of smaller proven functions, which could mean that FaaS is a suit-
able deployment model for this domain.

The experiment consists of running an implementation which confirms pre-
cipitation data from the Buenos Aires and Mendoza metropolitan regions in
Argentina. It is based on neuronal nets implemented in Python, the Keras li-
brary and TensorFlow. As it is an existing application which can not readily be
deployed into a FaaS environment, the research interest shifts to an earlier stage
in the service provisioning lifecycle, to the pre-deployment software develop-
ment. Tools are required which transform existing code into functions in confor-
mance with the programming conventions expected by the target provider. The
transformation process is consequently called FaaSification. In the experiment
in question, several monolithic functions are used which need to be subdivided
into several functions as part of this process to not exceed the FaaS providers’
execution time limits. We have designed and implemented a tool called function
splitter for evaluating the feasibility to split Python functions automatically. The
tool employs the concept of worm functions. While a function instance may be
terminated early due to a timeout, any other instance invoked by it just before
the timeout will not be affected and will get its own counter. Thus, a function
instance’s state can be carried on to another instance of the same or another,
sequentially related, partial function. The function splitter traces the use of lo-
cal variables in a first partial function F1 and adds them to the signature of
the subsequent partial function F2. The concept is explained with an example
in Listing 1.2 which shows the split after line 1 of the original function F which
contains a call to another function G.

Fig. 9 shows the performance of the forecast function F split into two partial
functions, F1 and F2, with an increasing number of lines in F1 instead of F2. One
interesting observation is that independent from the division into two functions,
the runtime of each successive function instance increases substantially in the



long term. A second observation is the pivotal point in which F1 almost swaps
its execution time with F2, which happens in line 18 of the code.

Listing 1.2. Example for function splitting based on worm functions

# original # partials
def F(x): def F1(x):

y = x + 1 y = x + 1
−−−−−−− return F2(x, y)
−−−−−−− def F2(x, y):
z = y - 2 z = y - 2
z += G(x) z += G(x)
return z return z

This effect is a sure signal of a call to another function, either local or remote,
which in turn needs to be subdivided to bring the partial function runtimes below
the acceptable limits, corresponding to the call to G in the example. Currently,
even the fastest partial execution time of F2, which is 289 s, would almost reach
Lambda’s 300 s limit, and some even exceed Cloud Function’s 540 s limit.
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The function splitter has been integrated with Lambada, a FaaSification tool
for Python which is publicly available [13], which otherwise had performed a 1:1
translation of functions in the code to hosted functions in FaaS environments.

4 Findings

A general observation is that despite the still immature programming and de-
ployment models for FaaS, experimental implementations from four different



scientific computing domains have been successfully executed on both commer-
cial and self-hosted FaaS runtimes.

The computing requirements of the four domains differ significantly with
respect to the utilisation of compute, storage and network resources. Fig. 10 gives
an exemplary insight into the processing as well as disk and network input-output
characteristics of the face detection function from the computer graphics domain
and the password cracking function from the cryptology domain. Heavy spikes
of usually 5 MB/s read and write operations, peaking in more than 9 MB/s, can
be observed in the first, and low CPU use due to network I/O waiting in the
second.
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Apart from the runtime, the findings also cover the development time. Through
our work on scientific applications, we are now able to suggest the following re-
fined classification of FaaSification process levels.

– Shallow FaaSification: classes or function collections divided into correspond-
ing FaaS units. Functions or methods are the atomic units on this level.

– Medium FaaSification: functions divided by lines into regrouped or split FaaS
units. Lines of code are the atomic units on this level.

– Deep FaaSification: single lines divided into multiple FaaS units or parame-
terised FaaS instances. Instructions are the atomic units on this level.

Existing function deployment and execution implementations cover these lev-
els to various degrees, calling for future work towards deep FaaSification for
special-purpose FaaS instances. The function execution environment Snafu per-
forms a simple shallow FaaSification for different programming languages assum-
ing single-file implementations. Existing transformation tools such as the triaged
Lambada, but also structurally similar ones such as Podilizer or Termite, per-
form a thorough shallow FaaSification which also works for complex projects
with multiple source files for Python and Java, respectively. Lambada further-
more now contains an implementation for medium and partial deep FaaSification,
although in the case of subdivided functions, all statements are still executed
serially instead of in parallel, suggesting further research to combine the work
with automated parallelisation.



In order to become useful for a wider group of users in scientific computing,
future research needs to concentrate on deep FaaSification, linking it to compiler
research in which optimisations, code rewrites and parallelisation take place
behind the scenes from an engineering point of view, outperforming almost any
manual target-specific optimisation.

Table 2 summarises means to overcome limitations in contemporary FaaS
environments with the purpose to execute resource-demanding scientific com-
puting jobs, divided into three categories. Our contributions are found within
all of the categories.

Table 2. Limitations and solutions

Limitation Solution Status

Resources
CPU compute-optimised hardware not commercially offered

manual parallelisation function futures (in this paper n)
automated parallelisation Pydron [10]

Memory map-reduce reference architecture [9]
Network local/function-affine services not commercially offered

Time and Cost
Runtime bypassing temporal limits worm functions (in this paper n)

standard benchmarks future work
Cost self-hosted runtimes available, but lack adaptive function mi-

gration
Software

Environment simulated services Localstack [7]
Development function subdivision Deep FaaSification (in this paper n)

5 Summary and Repeatability

The execution of resource-intensive jobs in controlled environments with require-
ments on repeatability is an atypical use case for serverless computing whose
predominant value proposition is exactly hiding any infrastructural configura-
tion. On the other hand, the true on-demand provisioning and billing of hosted
functions makes them attractive for research tasks. Our analysis has shown that
in many domains of scientific and high-performance computing, solutions can
be engineered based on simple functions which are executed on commercially
offered or self-hosted FaaS platforms. In this paper we have contributed novel
FaaS-related concepts (worm functions, function futures, deep FaaSification) and
tools (function subdivision) to improve this engineering process. Furthermore,
we have argued for the usefulness of our previous tools (Snafu, Lambada) for
researchers and practitioners in this context.

We still see the need for future work in standard benchmarks, tooling for
debugging and autotuning, and improved transformation tools to allow for more



conventional software to run natively as functions without the need to use ab-
straction layers such as containers.

All applications, data and scripts used in our experiments are made available
for anybody interested to recompute the results and repeat the analysis through
the corresponding Open Science Framework repository located at https://osf.
io/8qt3j/.
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