Predictable elasticity of
Docker applications

Manuel Ramirez Lopez

Service Prototyping Lab. ZHAW

ramz@zhaw.ch

31/05/2017

14th Docker Switzerland User Group Meetup .

Application composed of multiple Docker

containers

/ CLUSTER \
\ _ Statela_ﬁs nen _ Statehgss
& Java EE "’ s
i i Application [
I Y
_ o e ~ Stateful _ Stateful
Web Server App Server Aot RERAES

k MQ Server Database Server

Example of docker app Microservices architecture |Cg|ﬁﬁg %ﬁg

expected
performance

Why?

e The replicas are stealing

ﬁ actual

p performance resources from other

ﬁﬁf—* microservices which are on
the critical performance path

e The ineffective scaling

4 containers which are not the
eplicas bottleneck of the applicatig?

ICCLAB %
SPL&@’Q

How do Docker containers scale?

Stateful docker container: A container which maintains state
locally across invocations.So must to handle the persistence
of the state. Examples: databases and message queues.

Stateless docker container: Do not keep any state and
therefore do not persist data except through other services.

ICCL AB
SPL&M

How do Docker containers scale?

Scale-cube
e X-axis: horizontal duplication. i
Scale by cloning. e

Z-axis: data partitioning. Scale by
splitting similar data structures.

Y-axis scaling -
functional decomposition

Y-axis: functional decomposition.
Scale by splitting different

functionality. Monolith

Cloned and
load-balanced

X-axis scaling - horizontal
duplication

‘ Service Ingineering
anzeh A .

ICCLAB %%
SPLAR”

Autoscaling

1. Some microservices do not scale out or in as fast as is
needed. A prediction of when they need to scale is necessary

to achieve elasticity.

2. Not all microservice implementations can be auto-scaled by
instantiation alone. Stateful services are often not recognised

automatically.

3. Auto-scaling over the top of a bottleneck is in vain.

Some concepts

What is the best combination?

e Combination = (n1,nz, ..

The 3 factors:

e Use case (fix)
e Cost

e Performance

., Nk)

/ CLUSTER \

s s
[WEB AF"P} WEB AFP} WEB AFF"}
W \

£ I

DATABASE
e e J

!

Combination: 3 crud replicas, 1 database replica
(3,1)

‘ Service Ingineering
Fesearch Area
%

{ff"ﬂw

iy

Example combination
P SPLAR”

Scalability formula

e \What is the most economical combination satisfying minimum
performance constraints?

e \What is the fastest combination satisfying maximum price
constraints?

‘ Service Ingineering

Fescarch Aren

ICCLAB =%
SPLAR”

Step 1: Create a performance matrix

Time in seconds which the com bIAmn n needs 1o finish an experiment.

USE MAK
E il

PAN

REPEATING FOR
ALL COMBINATIONS

PERFORMANCE

EXPERIMENT COMBINATION n MATRIX

And now some math to show how that works

ICCLAB -7
SPLAR”

Step 2: Obtain a solution

fastest(M., prices, maz,, mazy)

=i | giel}{m,; € M, | m; < maz,, cost(i, prices) < maz,} (1)
K4

cheapest(Me., prices, mazx,, mazx,)

= 7| g}ér}{cost(i,prices) | M. > m; < maz,, cost(i,prices) < maz,.} (2)
7

fastest_rate(M,, prices, mazx,,, maz,, rate)

—-'l - (clmi< t ‘-<)
=1 gtlél}i mk_TGe, cost

where k = fastest(M,, prices, maz,, maz,) (3)

cheapest_rate(M,, prices, maz,, maz,, rate)

i | (¥ | cost (i, prices)

<
viel' ' cost(k,prices) — rate, <pers)

where k = cheapest(M.. prices, maz,,maz) (4) ICCLAB =%
SPLAR”

Practical example

Cluster

CRUD
Replica: 1

X - axis _f CRUD
"L Replica: N

|

pis

Replica: M

IE - axis

=

Replica: K

N

USE CASE (Experiment

e Search using word:

- documents/search/tenant/D/replica/word

e Return the last “number” documents:

- documents/tenant/D/tenant/replica/lim/nu
mber

e Return the last documents:

- documents/tenant/D/replica/last

e Return the document with the id 4:

- documents/tenant/D/replica/4

Docker images:

- mongo -
- chumbo/arkiscrud:1.6.1 ICCLAE =

SPLAR”

Practical example

Af — (8916 % 45.53 x 43.79 x 41.88 x 42.05 x 40.45
27 \71.70 % 48.11 * 40.07 * 35.92 % 36.05 * 36.35

Title Policy max, max, Rate||#S-ful #S-less Cost Makespan
fastest fastest X X X 2 7 0.83 35.92
cheapest cheapest X X X 1 1 0.33 89.16
fastest with C fastest 45.0 0.8 X 2 5 0.75 40.07
cheapest Wlth C |cheapest 45.0 0.8 X | 5 0.5 43.79

Legend: S-less = stateless, S-ful = stateful, C = constraints

DOCKER APP

89.16 * 45.53 x 43.79 * 41.88 x 42.05 = 40.45

My =
71.70 x* 48.11 * 40.07 % 35.92 * 36.05 *x 36.35
T~ Formula script
(Python)

‘Titlc ‘ Policy maz, maz, Ratc‘#S—fuJ #S-less Cost Makespan
fastest fastest X X X 2 7 083 3592
cheapest cheapest X X X 1 1 0.33 89.16
fastest with C fastest 45.0 0.8 X 2 5 0.75 40.07
cheapest with C |cheapest 45.0 0.8 X 1 5 0.5 43.79
fastest(C & rate) | fastest 45.0 0.8 1.06| 1 7 058 41.88
cheapest(C & rate)|cheapest 45.0 0.8 1.2 1 7 058 41.88
Legend: S-less = stateless, S-ful = stateful, C = constraints

ICCLAB %@

SPLAER"

Next steps

S |9 P e

Until now:
e Specific workload
Future work:
e Formula to find the relation for each of the bi-directed connected graphs
which compose the microservice architecture

Service Zng i neering

2szineh A

ICCLAB %
SPLAR”

Our research on Cloud-Native Applications

- One of the research initiatives of .
the Service Prototyping Lab at Clousl"Na_hve
Zurich University of Applied Appllcatlons
Sciences

- Successful transformation of legacy
software into cloud-native apps ”J

- Proven track record with CRM,
DMS and other Swiss business

apps
We co-innovate with software SMEs -
contact us for more information! aAB

SPLAE”

CNA research initiative blog.zhaw.ch/icclab/category/research-approach/themes
/cloud-native-applications/

Docker blog posts https://blog.zhaw.ch/icclab/tag/docker/

Application composed of | github.com/serviceprototypinglab/scaling-containers
multiple Docker containers

Experiments - test github.com/serviceprototypinglab/scalability-experiments

Results \
Ope,. —

Open Science Notebook n c

g ’ O U Day

Formula \ ICCLAB -

SPLAE”

