
Experimental Evaluation of the Cloud-Native
Application Design

Sandro Brunner, Martin Blöchlinger, Giovanni Toffetti, Josef Spillner, Thomas Michael Bohnert
Zurich University of Applied Sciences, School of Engineering

Service Prototyping Lab (blog.zhaw.ch/icclab/)
8401 Winterthur, Switzerland

Email: {brnr,bloe,toff,josef.spillner,thomas.bohnert}@zhaw.ch

Abstract—Cloud-Native Applications (CNA) are designed to
run on top of cloud computing infrastructure services with
inherent support for self-management, scalability and resilience
across clustered units of application logic. Their systematic
design is promising especially for recent hybrid virtual machine
and container environments for which no dominant application
development model exists. In this paper, we present a case study
on a business application running as CNA and demonstrate the
advantages of the design experimentally. We also present Dyna-
mite, an application auto-scaler designed for containerised CNA.
Our experiments on a Vagrant host, on a private OpenStack
installation and on a public Amazon EC2 testbed show that CNA
require little additional engineering.

I. BACKGROUND

Delivering software applications from the cloud requires a
new way of thinking about software architectures and software
engineering processes [1]. Typical cloud service environments
with raw infrastructure and featureful platform services (IaaS
and PaaS, respectively) offer multiple benefits over other soft-
ware hosting and delivery paradigms. Their full exploitation
is however only possible if the software is made – to a
certain extent – aware of the cloud hosting characteristics,
including elastic horizontal scalability, on-demand payment
and orchestrated application lifecycle. Often, applications are
migrated into the cloud as monolithic virtual machines, which
makes them vulnerable to availability failures and demand
spikes. This paper reports on how to mitigate these two risks.

There are a number of approaches to tackle this problem.
Model-based software deployment in the cloud matches soft-
ware capabilities with the hosting environment [2]. Code-
Cloud is a concrete multi-IaaS platform for executing sci-
entific applications with specified infrastructure requirements,
including SLAs, minimum replication factors and elasticity
[3]. Dispersed Computing is an availability-increasing concept
for storing and processing fragments of data across cloud
providers, either in the clear or with encryption for higher
confidentiality, resulting in Stealth Computing [4].

Cloud Native Applications (CNA) [5] are our approach of
de-composing software functionality into smaller service units,
connecting them with an orchestration authority and a scaling
engine, and running them with high resilience and scalability.
So far, CNA has been a mostly theoretic design with a distinct
lack of an evaluation study. This paper therefore does not
attempt to argue for CNA, for which we refer to our previous

publication [5]. It is also not a step-by-step guide to CNA, for
which we refer to our detailed posts on this topic 1. Instead,
it briefly repeats the CNA characteristics and then focuses on
a thorough evaluation.

In the next sections, we will first recapitulate design princi-
ples for CNA. Then, we will introduce an evaluation scenario,
and subsequently evaluate the scenario application’s scalability
and resilience in a private and in a public cloud environment.
Finally, we will wrap up our findings and contributions which
includes a novel scaling engine called Dynamite.

II. CLOUD NATIVE APPLICATIONS

The essential properties of CNA are scalability and re-
silience. For the scalability, a CNA has to be capable of taking
advantage of the cloud characteristics on-demand self-service,
rapid elasticity and measured service and to adjust its capacity
by adding or removing resources. For the resilience, a CNA
has to tolerate failures of commodity hardware, virtualised
resources or services. In order to achieve both properties,
CNA are structured into core functionality and supporting
functionality. The core is subdivided into fine-grained mi-
croservices so that each service can be scaled and governed
individually depending on the load within the corresponding
part of the application. The support encompasses monitoring
and management systems [5].

On the implementation level, cloud containers are an ap-
propriate mechanism to realise CNA. Containers, as opposed
to virtual machines, can be spawned and terminated quickly
similar to native system processes. Furthermore, in order to
make use of existing infrastructure management tooling, the
handling of containers can be harmonised with the handling of
virtual machines by having groups of containers across nodes.

III. EVALUATION SCENARIO

We present the CNA evaluation scenario in four steps. First,
we select a suitable target application. Second, we analyse
the application and plan the conversion to a CNA. Third, we
conduct the cloud deployment to achieve a running CNA.

1http://blog.zhaw.ch/icclab/category/research-approach/themes/
cloud-native-applications/

http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/

A. Selection of a Software Application

Our aim is to show and evaluate how to migrate an ap-
plication as CNA into the cloud – and by doing so, making
it resilient and scalable. This implies that the application is
self-managing so that once the application has been deployed,
it should automatically recover from failures and also auto-
matically scale up or down should the need arise. For the
evaluation, we had to settle on one particular existing software
application to show the applicability of the research. One of
the main requirements the application to migrate needed to
have was to be open-source. This allows for changes to some
of the core functionality of the application at some point.
After filtering popular business domains on the cloud and a
subsequent comparative evaluation involving five customer-
relationship management (CRM) business applications, we
selected Zurmo, an open-source CRM, as target to be migrated
into the cloud. There are two reasons Zurmo is a suitable
example. First, its code-base size is moderate which would
allow us to make changes to the source-code without too much
effort. Second, the application is being developed using a test-
driven process which ensures that the code has a certain quality
which would allow for a safer change of the application.

Next, we will describe how the original architecture of the
application looked like and which changes we introduced to
adapt it for a cloud environment. We explain how the resulting
CNA looks like and how it is technically implemented.

B. Analysis and Planning

From an architectural point of view, Zurmo is very straight-
forward and representative for many SaaS offerings. It is a web
application connected to a database with an optional cache. An
Apache web server is used to run the PHP code, MySQL is
the standard database used for the backend and Memcached
is used for the caching system. Session information is saved
locally on the web server by the application process. Fig. 1
shows Zurmo’s original architecture. In contrast, Fig. 2 shows
the architecture after the process of migrating it to a proper
CNA architecture. The CNA support functions are prominently
visible.

The application is scaled by placing a (possibly distributed)
load balancer in front of the web servers. Memcached already
allows horizontally scaling its service by adding additional
servers to a cluster. The database runs in a master/slave setup.
It can handle a bigger write load than the usage of a CRM
will typically require, and therefore, we do not consider the
single master a bottleneck in practice.

To enable the application’s ability of being self-managing,
a monitoring as well as a management system has been
added. The monitoring system monitors the application and
the systems the application runs on. This information is
needed to know the status of the system and to provide
input for the auto-scaling decision. All information gathered
from those systems are collected and saved in an external
database for analysis. The management system is responsible
for the discovery, the reliability and the automatic scaling of
the application. The discovery allows services to find other

Fig. 1. Original monolithic architecture of Zurmo

Fig. 2. Evolved architecture of Zurmo with CNA support functions

services. The health management component keeps track of
the health of the various parts of the system and restarts failed
components. The configuration/service discovery is used for
the various parts of the application to register themselves and
store information about the current status of the system. The
auto-scaling system takes scaling decisions based on input it
gets from the monitoring systems.

C. Conversion to CNA Architecture

Zurmo originally saved the session state from clients locally
on the web server nodes. Scaling the application horizontally
by running multiple web server instances behind a load
balancer would work but present some significant drawbacks.
Because of the local sessions, clients would always have to be
forwarded to the web server they originally connected to and
a crash of that particular web server would have resulted in
all clients connected to it losing their session information. The
former issue could have easily been resolved by using sticky
sessions. The latter issue could only be resolved by changing
the application to save session state remotely instead of locally.
In the migrated version of the application, Zurmo saves the
client session state to both the cache and the database, making
the apache layer stateless and the application both scalable
and more resilient. The failure of a single web server will not
negatively influence the clients anymore.

Fig. 3. Deployment scheme for containerised applications

D. Implementation and Migration Details

1) Virtual Machines and Containers: We chose the oper-
ating system image CoreOS as underlying virtual machine
because it is designed for clustered deployments and comes
with system services for health management (Fleet2) and ser-
vice/configuration management (etcd). Its software processes
typically run inside Docker containers. Different components
of an application are put into dedicated containers which
are then network-connected or directory-connected with each
other. In a first step, we containerized the components of
Zurmo. Thus, we created one container for the web server,
one for the load balancer, one for the database and one for the
caching system. All the CNA support components added later
– monitoring systems, scaling-engine – were also container-
ized. Fleet is actually a distributed init system responsible for
system boot sequences. It runs on top of systemd, a recent
parallelized implementation and conceptual enhancement of
init. Fleet allows to describe services and to deploy them
on machines in a cluster, ensuring they are kept in a certain
state, and re-deploys them in case of machine failure. In the
migrated application, the services typically start containers.
By containerizing the application and running it in a CoreOS
cluster with Fleet, we can ensure a resilient system as shown
in Fig. 3.

2) Service Autodiscovery: In order for the application to
be truly self-managing, its components need to be aware of

2For more details on Fleet the interested reader can refer to https://github.
com/coreos/fleet

one another and be able to adapt to a changing environment,
e.g. components being added or removed. In a self-managing
system, the web server should announce itself and the load-
balancer should reconfigure itself accordingly, for instance. In
order to achieve this, we use Etcd, essentially a distributed key-
value store, as service-discovery component in combination
with confd. Confd watches certain keys in Etcd, gets notified
when an update occurs, and updates configuration files based
on the values of those keys (Fig. 4). To announce services, we
use the sidekick pattern. With every service which needs to
announce itself (e.g. web server), a complementary (lifecycle-
bound sidekick) service whose only job it is to announce the
former service in Etcd is deployed. Confd is only installed
in containers of services which need to update themselves in
case components are added or removed.

3) Monitoring: The monitoring system, re-usable across
CNA applications, consists of the so-called ELK stack, log-
courier and collectd. The ELK stack in turn consists of
Elasticsearch, Logstash and Kibana. Logstash collects log
lines, transforms them into a unified format and sends them
to a pre-defined output. Collectd collects system metrics
and stores them in a file. We use Log-Courier to send the
application and system-metric log-files from the container
in which a service runs to Logstash. The output lines of
Logstash are transmitted to Elasticsearch which is a full-text
search server. Kibana is a dashboard and visualization web
application which gets its input data from Elasticsearch. It is
able to display the gathered metrics in a meaningful way for
human administrators. To provide the generated metrics for

https://github.com/coreos/fleet
https://github.com/coreos/fleet

Start

Register to etcd

etcd

Container Apache

Container HAProxy

(Loadbalancer)

Start

Listen to changes
Notification

Unregister from etcd

Notification

reload

configuration

reload

configuration

Container fails

Fig. 4. Dynamic reconfiguration of services through the auto-discovery
mechanism of etcd

the scaling engine, we developed a new output adapter for
Logstash which enables to send the processed data directly
to Etcd. The overall implementation is depicted in Fig. 5.
The monitoring component is essential to our experimental
evaluation.

4) Auto-Scaling Engine: The new scaling-engine Dynamite
is an open-source Python application which uses Etcd and
Fleet and therefore integrates natively with CNA. Dynamite
takes care of automatic horizontal scaling, but also of the

initial deployment of the application. It consists of several
components shown in Fig. 6. An auto-scaled application is
assumed to be composed of Fleet services. Dynamite uses
system metrics and application-related information to take
decisions when a service should be scaled out or in. If a service
should be scaled out, Dynamite creates a new service instance
and submits it to Fleet. Otherwise, if a scale-in is requested,
it instructs Fleet to destroy a specific service instance.

To calculate scaling decisions, Dynamite uses at the moment
a rule-based approach, but it can be easily extended to support
more advanced scaling logic (e.g., model based). A rule
consists of the name of the metric to be observed and a
threshold value, the type of the service the metric belongs to
and a comparative operator which tells Fleet how to compare
reported monitoring values with the threshold. Additionally, a
period can be defined in which the value should always be over
respectively under the threshold before executing a scaling
action. This avoids single peaks generating useless actions. A
cool-down period can also be configured per rule. Dynamite
will wait for the defined amount of time after the scaling rule
was executed before issuing the next scaling action from the
same rule. The following example shows an excerpt of the
configuration file as used in the Zurmo scenario application.

Service:
apache:
name_of_unit_file: apache@.service
type: webserver
min_instance: 2
max_instance: 5

Fig. 5. Monitoring and Logging

Fig. 6. Dynamite scaling engine components

scale_down_policy:
ScalingPolicy: apache_scale_down

scale_up_policy:
ScalingPolicy: apache_scale_up

[...]
ScalingPolicy:

apache_scale_down:
service_type: webserver
metric: cpu_utilization
comparative_operator: lt
threshold: 15
threshold_unit: percent
period: 30
period_unit: second
cooldown_period: 1
cooldown_period_unit: minute

The file declares an Apache web service which has at least
two running instances. If the scale-out (instance up) policy
would be triggered, at most five instances would be running.
The policy also defines under what circumstances the service
should be scaled-in (instance down). If the CPU utilization of
a service of the type webserver falls under 15% for at least
30 seconds, the instance which triggered the scaling policy
is removed. Figure 6 depicts the components of Dynamite
and the workflow between them. The configuration file is
read by the INIT component which initializes Dynamite and
writes the information from the configuration file to Etcd.
Dynamite is itself designed according to CNA principles. If it
crashes, it is restarted and re-initialized using the information
stored in Etcd. This way, Dynamite can be run in a CoreOS

cluster resiliently. If the node Dynamite is running on crashes,
Fleet will re-schedule the service to another machine and
start Dynamite there where it can restore the state from
Etcd. The INIT component also takes care of starting the
other components of Dynamite. The METRICS component
is used to collect the metrics stored in Etcd. It regularly
requests them and forwards them to the SCALING component.
This component compares the received metric values with
the scaling policy constraints and manages the state of the
scaling policies. If a scaling policy triggers a scaling action, it
will be sent to the EXECUTOR component. This component
creates or destroys service instances with the help of Fleet. For
more details, we refer to the documentation of the Dynamite
implementation3.

IV. EVALUATION EXPERIMENTS AND RESULTS

The evaluation of the CNA design involves stress-testing
the scenario application Zurmo in several cloud infrastructure
environments. The goal is to confirm the scalability and
resilience properties under the influence of availability failures
and demand spikes. Emulation within the actual system as
opposed to pure simulation has been chosen as scientific
technique for validating the application behaviour due to the
ability to cover all side effects, including service dependencies
[6]. We describe our approach of emulating cloud failures and
provoking demand spikes, followed by a presentation of the
results.

A. Resilience: Failure Emulation

For the emulation experiments, we have chosen the Multi-
Cloud Simulation and Emulation Tool (MCS-SIM)4 which
is an extensible open-source tool for the dynamic selection
of multiple resource services according to their availability,
price and capacity. Subsequently, we have extended MCS-
SIM with an additional unavailability model and hooks for
enforcing container service unavailability. Fig. 7 compares
the two models. By executing them, the state transition from
unavailable to available causes the corresponding container
service to be killed immediately.

The container service hook connects to a Docker interface
per VM to retrieve available container images and running in-
stances. Following the model’s determination of unavailability,
the respective containers are forcibly stopped remotely. It is
the task of the CNA framework to ensure that in such cases,
the desired number of instances per image is only shortly
underbid and that replacement instances are launched quickly.
Therefore, the overall application’s availability should be close
to 100% even if the container instances are emulated with 90%
estimated availability.

B. Scalability: Demand Spike Emulation

The simulation of heavy user influx on the web application
requires a configurable HTTP stress testing tool. We have

3Dynamite scaling engine: https://github.com/icclab/dynamite/blob/master/
readme.md

4MCS-SIM Tool: http://nubisave.org/cgi-bin/gitweb.cgi?p=mcssimulation

https://github.com/icclab/dynamite/blob/master/readme.md
https://github.com/icclab/dynamite/blob/master/readme.md
http://nubisave.org/cgi-bin/gitweb.cgi?p=mcssimulation

Emulation of Service Unavailability on Scenario 'singleservice'

 0

 1

 0 500 1000 1500 2000 2500

U
n
a
v
a
ila

b
ili

ty
 (

tr
u
e
/f

a
ls

e
)

Time (s)

anyservice/0.9/convergence

 0

 1

 0 500 1000 1500 2000 2500

Time (s)

anyservice/0.9/incident

Fig. 7. Comparison of two unavailability models for a single service with
90% average availability

chosen Tsung, an open-source multi-protocol tool which runs
distributed across multiple nodes5. In our experiment, the tool
first records the interaction with Zurmo from a single web
browser as intermediate proxy. Then, it replays the interaction
from multiple nodes in a cluster to achieve a high load. For
our experiment we used a simple step model increasing the
demand from 10 to 50 users over 25 minutes.

C. Resilience and Scalability Results

We have run the CNA scenario on Vagrant during develop-
ment, on OpenStack with Heat orchestration in a private cloud
and on Amazon AWS with CloudFormation orchestration on
a public cloud. The experiments reported here were performed
on the AWS deployment. The input models for demand spikes
and service unavailability have been executed in configurations
ranging from 3 to 10 virtual machines6 over which the
application containers were deployed.

Fig. 8 shows the response time for the configuration of 10
VMs as a result of the increasing number of users. The bottom
graph shows the number of active users over time. The trace-
driven workload run by Tsung for each of our simulated users
is configured to adopt and average think time of 5 seconds
between requests. As a result, the expected request range
is supposed to vary between 2 and 10 requests per second.
In practice, Tsung waits for a response before starting the
think time for submitting the next requests, so the request rate
obtained experimentally is slightly lower.

As it can be seen in the upper graph of Fig. 8, while the
request rate increases five-fold, the application continues to
handle the load while keeping the response time constrained.
As a reference, running the same experiment using only 4
VMs results in average response times of over 4 seconds.

Fig. 9 shows the effect of the health management component
which ensures a rapid recovery (within seconds) of the Apache
containers after failures are induced in the system through our
extended version of MCS-SIM.

5Tsung Tool: http://tsung.erlang-projects.org/
6We used AWS t2.small machines to test a larger distributed scenario with

constrained resources requiring autoscaling

 Request rate and mean response time

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600
 0

 2

 4

 6

 8

 10

R
e
sp

o
n
se

 t
im

e
 (

m
se

c)

R
e
q

u
e
st

s
ra

te
 (

r/
se

c)

req. rate
resp. time

 0
 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200 1400 1600
 0
 2
 4
 6
 8
 10

U
se

rs
 (

#
)

W
e
b

S
e
rv

.
(#

)

Experiment time (sec)

users
WS

Fig. 8. Sustained request rate and measured response time

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

W
e
b

S
e
rv

.
(#

)

Experiment time (sec)

Running apache instances

WS

Fig. 9. Resulting service availability

V. DISCUSSION AND FUTURE WORK

Our work has shown that with moderate effort, resulting
in mostly re-usable components, applications can be migrated
into cloud-native, resilient and scalable services.

We continue to work on CNA and evaluate conceptual
extensions such as clustered database backends, new tools such
as fluentd and additional scenario applications.

REFERENCES

[1] R. Bahsoon, I. Mistrík, N. Ali, T. S. Mohan, and N. Medvidovic, “The
future of software engineering IN and FOR the cloud,” Journal of Systems
and Software, vol. 86, no. 9, pp. 2221–2224, September 2013, Editorial.

[2] F. M. R. Junior and T. da Rocha, “Model-based Approach to Automatic
Software Deployment in Cloud,” in Proceedings of the 4th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER),
Barcelona, Spain, April 2014, pp. 151–157.

[3] M. Caballer, C. de Alfonso, G. Moltó, E. Romero, I. Blanquer, and
A. García, “CodeCloud: A platform to enable execution of programming
models on the Clouds,” Journal of Systems and Software, vol. 93, pp.
187–198, July 2014.

[4] J. Spillner, “Secure Distributed Data Stream Analytics in Stealth Appli-
cations,” in 3rd IEEE International Black Sea Conference on Communi-
cations and Networking (BlackSeaCom), Constant,a, Romania, May 2015.

[5] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds,
“An architecture for self-managing microservices,” in Proceedings of the
1st International Workshop on Automated Incident Management in Cloud
(AIMC), Bordeaux, France, April 2015, pp. 19–24.

[6] R. Lübke, D. Schuster, and A. Schill, “Experiences Virtualizing a Large-
Scale Test Platform for Multimedia Applications,” in 10th International
Conference on Testbeds and Research Infrastructures for the Development
of Networks & Communities (TridentCom), Vancouver, Canada, June
2015.

http://tsung.erlang-projects.org/

	Background
	Cloud Native Applications
	Evaluation Scenario
	Selection of a Software Application
	Analysis and Planning
	Conversion to CNA Architecture
	Implementation and Migration Details
	Virtual Machines and Containers
	Service Autodiscovery
	Monitoring
	Auto-Scaling Engine

	Evaluation Experiments and Results
	Resilience: Failure Emulation
	Scalability: Demand Spike Emulation
	Resilience and Scalability Results

	Discussion and Future Work
	References

