
KIARA Demonstration

Context

FI-PPP

European programme for

Internet-enabled innovation

FI-WARE

Technology Foundation of

FI-PPP

KIARA

Advanced Middleware

KIARA - An advanced Middleware

● Message oriented communication middleware

● Simplifies communication between distributed heterogeneous

systems
o Systems with different operating systems

o Applications using different programming

languages and paradigms

● Abstracts network-layer with common API

KIARA - Advanced Features

● Data-structures used in an application can be dynamically mapped

to IDL definitions at run-time

● No extra code generation (skeleton/stub) required to use

middleware

● Embedded compiler (LLVM) generates highly optimized code

● Negotiation of optimal communication mechanisms, protocols, and

data representations to be used between two peers

KIARA - Advanced Features

● Offers multiple communication paradigms like Request/Reply or

Publish/Subscribe.

● Secure by Design approachApplications can declare their security

needs in the form of security policies (security rules) and apply

them to data structures and service at development time or even

later during deployment definitions

KIARA - First Benchmarks
Message-Size: 470 Byte

Messages per Test: 10’000

Measured Tests: 20

Unit of Time: micro-

seconds

AvgLat: average

latency

SSD:

 sample standard

deviation

KIARA - Architecture

KIARA - Architecture Detailed View

KIARA - Responsibilities of ICCLab

● Offer transport capabilities to upper layers

● Offer functionality to negotiate transport, QoS and

security parameters

KIARA - Transport Stack

Offers SCALN - a System Call Abstraction Layer for

Networking

 ● register_callback / callback

● get_context / set_context

● get_session / set_session

● get_configuration /

set_configuration

● bind / unbind

● connect / disconnect

● send / receive

Offers C-Bindings of SCALN

Support of additional languages planned

Transport Stack - Underlying Techn.

ZeroMQ: High-performance asynchronous messaging library aimed

at

use in scalable distributed or concurrent applications.

Why: - very lightweight library

- implements several communication patterns that

 can be leveraged

- has very well defined clean documentation and

 API (reusable messaging stack)

Transport Stack - Underlying Techn.

InfiniBand: Switched fabric computer network communications

technology used in high-performance computing and

enterprise data centers.

Why: - For high throughput / low latency use cases

 - Offer RDMA (Remote Direct Memory

Access)

KIARA - Negotiation

Initiator Target

1. Set Local Capabilities

1. Set Local Capabilities

2. Send Offer

3. Compute Answer

4. Reply Answer

5. Communication starts

KIARA - QoS

● If the network has a SDN controller with the KIARA SDN

application, we can assure/offer:

○ Bandwidth - certain amount of bandwidth with rate-limiters

○ Path - policy based privileged network paths

○ RTT - using monitoring to ensure max Round Trip Time

○ TOD - configure the communication according to the type of

the devices along the path

● Transport with timestamp information (deadline) by using the

Real Time Publish Subscribe (RTPS) protocol

KIARA Demo - Code Examples

Use different application types

KT_Configuration conf;

conf.set_application_type(KT_STREAM);

 KT_WEBSERVER);

KT_PUBLISHSUBSCRIBE);

KT_REQUESTREPLY);

Use different communication technologies

 KT_Connection* conn = new KT_Zeromq();

 KT_InfiniBand();

 KT_Boost();

KIARA Transport- Client Code Example
1. Create and configure connection

KT_Configuration config;

config.set_application_type (KT_REQUESTREPLY / KT_PUBLISHSUBSCRIBE);

config.set_host(KT_TCP, “192.168.100.1”, 5555);

KT_Connection *connection = new KT_Zeromq() / new KT_InfiniBand() ;

connection->set_configuration(config);

2. Use connection to send and receive messages

connection->connect(...);

connection->send(...);

connection->recv(...);

connection->disconnect(...);

KIARA - Demo Setup

Broker

Reply-Server

Publisher
Printer

Subscriber

Client

HTTP REST

Request / Reply

Publish / Subscribe

3.1 Publish Request & Reply

DEMO

Send PUT Request to http://160.85.4.249:8080

$ curl http://160.85.4.249:8080 -X PUT -d “some text”

http://160.85.4.249:8080
http://160.85.4.249:8080
http://160.85.4.249:8080

Backup Slides

KIARA Negotiation Sequence

1: - Server sets local capabilities

KIARA Negotiation Sequence

2: - Client sets local capabilities

 - Client composes offer

KIARA Negotiation Sequence

3: - Client and Server negotiate transport and QoS settings

Internal Transport architecture

KIARA Transport - Code Beispiele

Because nobody wants to write all this for just a webserver

KIARA - Negotiation
Goal: Negotiate application and communication settings

1. Both, Initiator (client) and target (server) set their local capabilities

2. Initiator composes an offer out of his local capabilities and sends an offer

to the target

3. The target compares the remote capabilities with the local ones and sends

back an answer

4. The initiator sets the negotiated answer as final and starts the

communication

Optional step 2: The initiator fetches the capabilities of the target

