
Selective Java code transformation into AWS Lambda functions

Serhii Dorodko and Josef Spillner
Zurich University of Applied Sciences,

School of Engineering, Service Prototyping Lab (blog.zhaw.ch/splab), Switzerland
{dord,josef.spillner}@zhaw.ch

Abstract

Cloud platforms offer diverse evolving programming
and deployment models which require not only appli-
cation code adaptation, but also retraining and chang-
ing developer mindsets. Such change is costly and is
better served by automated tools. Subject of the study
are automated FaaSification processes which transform
conventional annotated Java methods into executable
Function-as-a-Service units. Given the novelty of the
problem domain, a key concern is the demonstration
of feasibility within arbitrary boundaries of FaaS offer-
ings and the measurement of resulting technical and
pricing metrics. We contribute a suitable tool design
called Termite with corresponding implementation in
Java. The design is aligned with a generic transfor-
mation pipeline in which each step from code analysis
over compilation to deployment and testing can be ob-
served and measured separately. Our results show that
annotations are suitable means for fine-grained con-
figuration despite ceding control to the build system.
Smaller Java projects can be FaaS-enabled with little
effort. We expect FaaSification tools to become part
of build chains on a wide scale once their current en-
gineering shortcomings in terms of tackling more com-
plex code are solved.

1 Motivation

New computing paradigms such as cloud computing
bring along new programming models with high fre-
quency. In domains centered around discrete events
such as connected devices, cloud automation or elec-
tronic markets, trends indicate that the execution of
short-lived functions in Function-as-a-Service (FaaS)
environments will become the dominant hosted code
paradigm. As the FaaS programming, deployment and
execution model is becoming more popular, its ex-
ploitation would benefit from a developer-controlled

semi-automated transformation of legacy code and of
generic new code to the coding and packaging conven-
tions expected by this model, including runtime restric-
tions. Ideally, programmers would not have to worry
about how to map Java classes into cloud functions;
rather, a smart transformation mechanism would per-
form this work, resembling a compiler which would
treat the function runtime as its low-level target plat-
form.

In our previous work, we have reported on a fully-
automated approach called Podilizer [SD17] which
however fails to transform a number of functions or
methods. Some failures occur at translation time due
to complex code structure. Possible reasons for run-
time failures beyond translation are use of local in-
put from files or interactive terminals. Furthermore,
the runtime overhead of Podilizer becomes needlessly
high whereas in practice, only few functions on the
performance-critical path may need to be offloaded to
a FaaS environment.

Instead, in this work, we explore an assisted ap-
proach which is controlled by programming language
annotations and introduce Termite as tooling support.
As with the previous work on Podilizer, we limit the
study and observations to Java code as input and AWS
Lambda functions as output in order to allow for com-
parison, but claim that most of the observations also
apply to other combinations without loss of generality.

Hence, we aim at contributing novel insight into
a selective automated transformation of legacy appli-
cations into FaaS-hosted cloud applications which we
name FaaSification for the general case from a soft-
ware technology perspective. We claim that our tools,
Podilizer and Termite1, are the first ones which per-
form such a transformation from monolithic Java code
to AWS Lambda units, and do so with sufficient qual-

1Podilizer is publicly available at https://github.com/

serviceprototypinglab/podilizer and Termite at https://

github.com/serviceprototypinglab/termite.

9

ity to be considered in cloud application prototyping
projects. Due to the restriction to Lambda, we re-
fer to this process more specifically as Lambdafication.
We employ an experimental scientific method with syn-
thetically generated and manually engineered applica-
tions. The research is backed up by a curated dataset
containing publicly verifiable tools, reference applica-
tions and experiment instructions. As we have previ-
ously reported extensively on Podilizer [SD17], we will
not repeat its design and only include the tool for the
purpose of experimental comparison in this article.

The article is structured as follows. First, it dis-
cusses related work. Then, it outlines the research
questions and the chosen approach and explain how to
map object-oriented programming to a function-based
service and execution model. The mapping descrip-
tion is complemented by an abstract pipeline archi-
tecture and a concrete realisation thereof, the Termite
tool, with unique benefits in the trade-off between au-
tomation and developer control. Afterwards, we share
the experimental evaluation results and discuss the ex-
tracted findings. The paper concludes with an open
discussion of how software should be written for the
cloud based on fine-grained functions.

2 Related Work

Software engineering for FaaS environments is an
emerging topic. In 2019, the European research project
RADON was initiated to produce an advanced DevOps
framework for FaaS but will require time to produce
first results. As one of the first large-scale academic ef-
forts, it contrasts established industry approaches such
as the Serverless Framework. In recent versions of
this framework, cloud function code is supplied with
wrapper functions to achieve deployment across cloud
providers. No further code analysis is performed, and
the framework assumes a function-native development
approach.

Code transformation has been proposed to reduce
software prototyping and engineering effort for several
new execution environments. In 2015, Cai et al. in-
troduced a pattern-based technique for cloud-readiness
[CZW+15]. The technique uses patterns, rules and
templates and was validated on 19 open source Java
projects migrated to AWS cloud services. The trans-
formation did not change the execution nature but
modified the storage/persistence layer to attach to Dy-
namoDB and other cloud database and security ser-

vices. No performance numbers or other details beyond
the changed lines of code were reported.

Already in 2012, JTransformer was proposed to
achieve higher precision and recall of design pattern de-
tection in code analysis and code reengineering tasks
[BK12]. It is available as plugin for Eclipse JDT. It
works on factbases which are associated to Prolog pro-
cesses to produce analyses and transformations (A&T).
While a useful expert tool, it requires knowledge of
Prolog to write A&T which is not a skill most FaaS
developers would possess, and it lacks a runtime in-
tegration for applications with selective offloading to
cloud functions.

3 Approach

Our approach consists of three parts. First, we iden-
tify three research questions. Then, we explain general
decisions which must be taken by any transformation
tool related to the programming model, the handling of
stateful objects and the design of a transformation pro-
cess. The third part presents both the design and the
implementation of our transformation tool Termite.

3.1 Research Questions

The planned code transformation process leads to three
research questions (RQ1–RQ3). Our approach is fo-
cused on generating empirical results and deriving the
answers accordingly. Both RQ1 and RQ2 mirror the
research questions from our initial work on Podilizer
but will result in different answers due to our advanced
approach.

RQ1: Is it economically viable to run a Java applica-
tion entirely over FaaS with no or little cost overhead
for typical usage patterns? The comparison baseline
would be conventional programmable platform (PaaS)
models by deploying the application onto a suitable
application server as well as programmable infrastruc-
ture (IaaS) by wrapping the Java application into a
container or a virtual machine. Evidently, the ques-
tion needs to be broken down to the granularity of of-
floading Java methods and the way they interact with
each other. If each small helper function becomes a
cloud function under the FaaS pricing model, deeper
callgraphs will quickly result in prohibitively expensive
hosting.

RQ2: Is it technically feasible to automate part of
this process? And if so, which percentage of code
coverage can be expected, which performance can be

10

achieved, and which code is easier, hard or impossible
to convert? Evidently, due to our approach of using
annotations, the automation depends on the choice of
where to put which kind of annotation.

RQ3: Is there a friction-free integration with es-
tablished Java development notations and processes?
Can the FaaSification be integrated into existing build
tools?

3.2 Programming 7→ Execution Model
Mapping

FaaS is inherently bound to the functional program-
ming paradigm. Its characteristics under a pure in-
terpretation are determined by stateless computations
with strict use of invocation parameters and return val-
ues without global variables. In practice, just as func-
tional programming languages have introduced tech-
niques to cause side effects and manage state, for in-
stance through monads, so do most FaaS interfaces, for
instance through access to storage services.

The function orientation is in contrast to Java’s
model which is predominantly an object-oriented lan-
guage. Even though few functional programming con-
cepts are available through the Functional Java library
and starting with Java 8 with native Lambda expres-
sions [Plu14], the dominant share of code is written in
a pure object-oriented way. The same observation ap-
plies to similar programming language. Therefore, the
code translation needs to take the paradigm shift into
account.

The challenges are then related to the mapping of
Java classes to appropriately packaged Java FaaS func-
tions, called FaaS units or functional units. The map-
ping needs to account for empty methods, getters and
setters, constructors and singletons. Beyond the code,
typical Java project conventions such as the presence
of a src folder, but also the absence thereof and ex-
ceptions from the conventions, need to be accounted
for. Finally, the mapping needs to consider the group-
ing of methods per functional unit to avoid excessive
network calls and ensure that all dependency methods
referenced from each method can be resolved.

Considering execution cost (RQ1), in commercial
FaaS environments the three contributing factors are
execution time, memory allocation and a fixed per-
invocation fee, with some providers speeding up execu-
tion upon allocation of more memory, while code size is
not a factor. Applying code transformation could lead
to combined cost/performance improvements by pack-

ing various combinations of local functions into cloud
function bundles and invoking the appropriate bundle.
In our approach, we perform a simple 1:1 mapping in-
stead.

Considering the automation (RQ2), we note that us-
ing annotations allows for configuring per-method pa-
rameters on where and how the cloud function should
be executed, including an individual assignment of
memory allocation and runtime constraints. Moreover,
we argue for a fine-grained staged code transformation
so that analytical and corrective measures can be in-
troduced for each method in various stages. In our
approach, we will use a pipeline model with multiple
transformation steps per function, and an injection of
additional code for transparently handling state.

3.3 State Handling

Java methods are often stateful through instance at-
tributes. The state handling of the resulting decom-
posed functions can either extend the method signature
to pass in and out all attributes that are accessed and
modified, or use server-side state. AWS Lambda offers
both an S3 blob storage interface and local environ-
ment variables. However, the variables are restricted to
read-only access from the runtime. Weighting the ad-
vantages of S3 (performance) against extended method
signatures (price, functional purity), our approach uses
the latter technique.

In Java, methods with parameters are integral parts
of classes and are used to change the state of the corre-
sponding instances: Class.method(params). The in-
stance is self-referenced implicitly with the keyword
this. According to the Lambda programming model,
every function unit assumes a specific stateless class
with a method handler which is triggered when the
function is invoked. The statelessness is due to not
guaranteeing the same object of this class to be used for
subsequent requests. Early works to compile Java code
into a typed Lambda calculus have suggested making
the self-references explicit by enhancing the method
signatures with it [WJUH98] which is the approach
chosen by us as well.

The translation process thus rewrites the method
header with the Lambda-required signature and
the method body with generated code. This
code first initialises the invocation credentials, cre-
ates an input object to save the instance state
as well as any method parameters, initialises the
Lambda invoker with the created input object se-

11

rialised to JSON, calls the method (Class.ha-
ndleRequest(input, output, context)), fetches the re-
sult from the deserialised output object, and renews
the instance state using the result object. The creden-
tials are read from the environment and upon failure
from a configuration file which permits the generated
code to still run outside of the Lambda environment.

3.4 FaaSification Pipeline

FaaSification is the process of converting a code struc-
ture into a format that is executable on FaaS. In our
approach, inspired by the predecessor work [SD17], this
process is represented by a superscalar pipeline which
allows for parallel processing of each of its steps. The
first step is the static code parsing and analysis (A).
The second step is the decomposition into functional
units and a remainder which includes the code identi-
fied as incompatible to the target FaaS platform (D).
The third step is the source-to-source translation of the
functional units into FaaS units, adhering to the calling
conventions of the target platform (F). The fourth step
is the compilation and dependency assembling of these
units (C), and the fifth step is their upload, deployment
and configuration to turn them into ready to use mi-
croservices (U). An optional sixth step is the system-
atic test of all deployed functions and the verification
of the successful transformation (U). Fig. 1 gives an
example of a generic FaaSification pipeline whose par-
allel execution depends on resource consumption su-
perpositioning and on dependencies between methods
before the ability to run unit tests. In our work, we re-
fer to the process adopted for targeting AWS Lambda
within the boundaries of the pipeline more concretely
as Lambdafication.

Figure 1: FaaSification pipeline

4 Tool Design and Implementation

Following a research approach based on competing de-
signs, we design two distinct tools with different trade-
offs between developer effort and technical characteris-
tics of the resulting functions. The first, Podilizer, at-

tempts to lambdafy an entire Java project uncondition-
ally, including all classes and public methods. Any con-
figuration is read from a per-project configuration file.
Podilizer has been described in detail in previous work
[SD17]. The second, Termite, only lambdafies meth-
ods explicitly marked by the software developer. Any
configuration can be customised through the markers.
The impact of the competing designs on software de-
velopment contributes to the answer for RQ3. We are
interested to quantify the differences between the two
tools via conformance and performance measurements
to achieve an answer for RQ2. The resulting functions
are compared against their original monolithic imple-
mentations to finally answer RQ1.

4.1 Termite Design

In contrast to Podilizer, Termite supports the selec-
tive publishing of functions through Java method an-
notations. Through parameters to these annotations,
the deployment as well as operational aspects can be
controlled by the software engineer which aligns with
combined developer and operator roles (DevOps). Us-
ing annotations offers the following advantages: They
are part of the Java language syntax, their vocabulary
can be learned easily as domain-specific language, and
they can be extended to cover future FaaS features.
In Termite, @Lambda annotations are thus applied on
the method level, although recent research on @Java
for more fine-grained annotations suggests that more
sophisticated FaaS deployments might become possi-
ble [CV13]. All parameters have default values and are
therefore optional, contributing to a rapid service pro-
totyping experience. The set of supported parameters
is described in Table 1.

Table 1: Lambda annotation parameters.
Parameters Semantics Default
endpoint endpoint URL, selection of runtime provider null

region deployment region us-west-2
memory execution memory limit in MB 1024
timeout execution timeout in seconds 60
env environment variables available to instance –

A unique feature is the ability to define the endpoint.
It allows for deployment and invocation of functions
at alternative FaaS installations that offer the AWS
Lambda interface. The choice of provider is thus made
programmable as well, reducing vendor lock-in.

Fig. 2 represents the compilation pipeline when us-
ing Termite in software development projects. Com-
pared to the generic pipeline, several steps are either
combined or subdivided, ceding control over the order

12

and parallelisation of method processing. Termite’s
transformation work is hooked into the compilation
before the Java compiler performs its work. Its run-
time part to invoke dependency functions is further-
more coded into the rewritten method invocations (I2).

Figure 2: Termite compilation pipeline: Generation of
functions (G1) and additional sources (G2), compila-
tion (C) and upload (U) of functions, build (B) and
invocation (I1) of the annotated Java application, and
hosted function invocation (I2)

4.2 Termite Implementation

Besides the Lambda function source code generation,
Termite takes care of invocations of each function at
runtime. The implementation uses AspectJ and the
Reflection API. The purpose of the AspectJ library is
to create aspects, basically interceptors. Custom as-
pects can be configured to react on a particular an-
notation, to interrupt the normal runtime workflow
through join points and to perform custom actions
instead. In Termite, the interception logic mandates
that each method annotated with the @Lambda anno-
tation is being intercepted and then separated into a
new thread. Lambda’s concurrency paradigm is thus
exploited. Going deeper into the interception logic,
aspects can interrupt the workflow before, after and
around every method or particular marked ones, for
instance with certain annotation. Termite uses the
”around” interception, meaning that aspects will be
called instead of the main method which is then in
turn invoked again from the aspect. The aspect ini-
tialisation is demonstrated in Listing 1.

The aspect’s join point allows to use the Java Reflec-
tion API to get the method specification and perform
the invocation. Furthermore, if a hosted function is un-
reachable, a configuration option allows for the method
to be called locally, providing a fail-over mechanism for
functions that are outsourced for performance reasons
without consideration for local code size.

Listing 1: Use of aspects within Termite.
@Aspect
pub l i c c l a s s Invoke {

@Around(” @annotation (lambda)”)
pub l i c Object anyExec (ProceedingJoinPoint jo inPoint ,
ch . zhaw . sp lab . t e rmi te . annotat ions . Lambda lambda)
throws Throwable {

MethodSignature s i gna tu r e = (MethodSignature)
j o inPo in t . ge tS ignature () ;
Method method = s i gna tu r e . getMethod () ;
InvokeThread invokeThread = new InvokeThread (method ,
lambda , j o inPo in t) ;
invokeThread . s t a r t () ;
r e turn n u l l ;

}
}

The resulting implementation architecture and work-
flow of Termite is shown in Fig. 3.

Figure 3: Termite implementation architecture and
workflow

Projects compiled with Termite are modified to de-
pend on Termite’s invocation module. Any data ex-
change between local and functions is performed us-
ing JSON through this module. For each generated
Lambda function, additional input and output classes
are also generated. These classes are usual POJOs,
resulting in plain old java objects without extending
existing classes or using other annotations. The input
object is mapped into JSON and transports informa-
tion to the Lambda function instance. The object of
type output brings data back to the invoker. Input and
output classes are built based on the method’s specifi-
cation, its parameters for the input type and its return
value for the output type. Additionally, the output
type contains fields for service time and environment
description. Listing 2 gives an example of how a sum-
mation method is transformed by Termite.

13

Listing 2: Example of a Termite code transformation.
@Lambda()
pub l i c s t a t i c i n t sum(in t a1 , i n t a2){

System . out . p r i n t l n (” a1 + a2 = ” + (a1 + a2)) ;
r e turn a1 + a2 ;

}

// i s transformed in to (with s i m p l i f i e d imports)

import java . i o . ∗ ;
import com . amazonaws . s e r v i c e s . lambda . runtime . ∗ ;
import com . amazonaws . u t i l . IOUt i l s ;
import com . fa s t e rxml . jackson . databind . ∗ ;

pub l i c c l a s s LambdaFunction implements RequestStreamHandler{
pub l i c void handleRequest (InputStream inputStream ,
OutputStream outputStream , Context context) throws
IOException {

long time = System . cur rentTimeMi l l i s () ;
ObjectMapper objectMapper = new ObjectMapper () ;
objectMapper . d i s a b l e (S e r i a l i z a t i o n F e a t u r e . FAIL ON
EMPTY BEANS) ;
S t r ing inputSt r ing = IOUti l s . t oS t r i ng (inputStream) ;
InputType inputType = objectMapper . readValue (inputStr ing ,
InputType . c l a s s) ;
i n t r e s u l t = sum(inputType . getA1 () , inputType . getA2 ()) ;
OutputType outputType = new OutputType (”Lambda
environment ” , System . cur rentTimeMi l l i s () − time , r e s u l t) ;
objectMapper . writeValue (outputStream , outputType) ;

}

pub l i c s t a t i c i n t sum (. . .) { . . . } // as above
}

4.3 Termite Limitations.

The implemented prototype only supports synchronous
Lambda function calls which may change the program
semantics due to Java offering an asynchronous Fu-
tureTask class for concurrent compute tasks. Asyn-
chronous methods using FutureTask would need to en-
force the corresponding asynchronous function calls to
avoid blocking, even though they do not offer cancella-
tion, making a strict translation impossible. The mis-
match is caused by Lambda not treating function in-
stances as first-class citizens. Once deployed, changes
in methods are not recognised and do not automatically
lead to a re-upload. This means that even for smaller
changes, a forced re-deployment has to be performed
to avoid code inconsistencies.

5 Trials and Findings

We evaluate Termite experimentally with a standard
research testbed approach shown in Fig. 4, first on
its own and then in comparison to Podilizer. All in-
put to the experiments is recorded in public versioned
repositories, and all raw output is captured in another
dedicated repository. The versioning allows for finding
improvements and regressions over time as the soft-
ware evolves. All experiments are tracked in a pub-
lic Open Science Notebook and tools for reproducibil-
ity, repeatability and recomputation are made available

as well in a Lambdafication Repeatability project2.
The main results of the current implementation are
reflected in this section.

Figure 4: Testbed for performing experiments on
Podilizer and Termite

5.1 Experiment Setup

Each step of the pipeline is associated to a unique check
for success. The first three steps are performed inter-
nally by Podilizer within one procedure, whereas the
three remaining ones are merely automated by running
executables out of which one is provided by Podilizer,
too. In Termite, only the third step is performed by the
tool and the last two steps are automated. The most
crucial check is the final one which is successful if all
deployed functions are remotely invocable. According
to DZone, about 30.7% of all Java projects hosted on
Github depend on JUnit which calls for an integration
to ensure systematic testing of the deployment [Har13].
Table 2 summarises all steps and checks.

Table 2: Lambdafication pipeline steps and checks.
Step Podilizer Check Termite Check
A: code analysis JavaParser return value –
D: code decomposition Podilizer internal –
F: function translation Podilizer internal Termite internal
C: compilation compiler/build exit status –
U: upload deployer exit status deployer exit status
V: verification call, unit test exit status unit test exit status

Both transformation tools instrumented with
millisecond-precision logging to reveal the duration of
each pipeline step. In addition to the performance,
the quality of the transformation can be measured
by the ratio of successful checks against all which are
performed in each step.

The economic aspect requires a comparison between
the execution of the lambdafied application compared
to a monolithic execution in a configuration which
matches the performance. In the absence of a general

2Lambdafication Repeatability in the Open Science Frame-
work: https://osf.io/c886p/

14

performance estimation formula, a manual calibration
specific to each software application under test is there-
fore needed.

The reference input project set consists of six soft-
ware applications which represent the large variety of
Java software engineering, ranging from 28 to 771 sig-
nificant lines of code (SLOC), diverse interaction forms
(none, standard input and output, graphical, files,
HTTP methods) and build tools (javac, make, maven,
ant) and artefact type (applications, libraries, plugins,
tests). The software projects are a graphical window
with buttons (P1), mathematical functions (P2), cal-
culation of shipping containers and boxes (P3), public
transport information (P4), image processing (P5) and
domain-specific language parsing and evaluation (P6).
An artificial project consisting of 100 numbered Java
hello world methods is used as additional comparison
point (P7).

5.2 Results

We have run the experiment on a notebook with Intel
Core i7-4800MQ quad-core processor clocked at 2.70
GHz. The notebook was connected to SWITCHlan,
the Swiss university network, via 1000baseT Ether-
net, and installed with Ubuntu Linux and OpenJDK
8. The results differ depending on the chosen software
project to translate. The values are also influenced
by the hardware, the used software tools (Termite and
Podilizer, AspectJ, Maven, JUnit), the FaaS runtime
environment (AWS Lambda, Snafu) and the network
connection in between. A full specification and self-
contained virtual machine is made available as part of
the Lambdafication Repeatability project.

5.2.1 Termite results

The evaluation of Termite follows the same pattern
as the one already published for Podilizer. Table 3
summarises the achieved transformation quality on the
projects P1–P6. Due to the combined analysis and
transformation steps, the results for A → D → F are
joined. The evaluation omits the verification step V
entirely due to the impossibility to invoke remote func-
tions from other functions with the current implemen-
tation. Consequently, all projects fail overall although
porting the related functionality from Podilizer would
be possible with moderate engineering effort beyond
our research work.

The original project sizes after adjustments to com-

Table 3: Lambdafication pipeline characteristics (qual-
ity) for P1–P6 with Termite.

Step P1:Q P2:Q P3:Q P4:Q P5:Q P6:Q
A,D,F 100% 100% 100% 100% 100% 100%
C 0% 33% 8% 0% 6% 0%
U 0% 33% 8% 0% 6% 0%
V – – – – – –
TOTAL fail fail fail fail fail fail

pile with Termite through Maven and the resulting
sizes with generated code are compared in Table 4.
Compared to Podilizer, the overhead is much lower
both on average and per each individual project.

Table 4: Application source code size comparison be-
fore/after using Termite.

Flavour P1:S P2:S P3:S P4:S P5:S P6:S
Original 32 kb 44 kb 44 kb 44 kb 48 kb 100 kb
Lambdafied 332 kb 492 kb 1528 kb 1288 kb 1964 kb 736 kb
Overhead 938% 1018% 3373% 2827% 3992% 636%

5.2.2 Comparative results

Fig. 5 shows the performance timeline of Termite on
the synthetic application P7. On average, including the
Maven overhead, around 5-6 seconds are spent on pro-
cessing each annotated function in addition to possible
network delays. The total processing time per method
is 12.06 s which factors in further Maven and AspectJ
overheads. In contrast, Fig. 6 shows the correspond-
ing performance timeline of Podilizer. The raw build
and upload time is similar, albeit slightly higher com-
pared to Termite with about 6-7 seconds. The discrep-
ancy can be observed with the translation time that the
tool implements by itself which slows it down consid-
erably to a total processing time per method of 17.21
s. This implies that despite Termite’s more flexible ap-
proach, it is about one third faster than Podilizer. The
drawback is that the Termite implementation does not
consider dependency functions whereas Podilizer con-
siders all methods in a file as potential dependencies
for which proxy stubs are generated.

Table 5 compares the overhead on code size of both
approaches, starting with the synthetic code file of P7
which accounts for 14.0 kb with annotations and 5.8
kb without. Due to the included stubs, the overhead
is much higher on the source side with Podilizer, but
less on the binary side as the dependency JARs per
function, which are almost equal in both tools and in-
clude the AWS SDK, account for the majority of added
space. An apparent drawback is that Podilizer assumes
all other methods per file to be dependencies instead of
performing a static call tracing which would drastically

15

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 (

s)

invocation #

Termite performance

build (avg 4.10, sd 0.24)
upload (avg 0.82, sd 0.10)
delete (avg 0.36, sd 0.02)

averaged grand total (avg 12.06)

Figure 5: Performance timeline of Termite on P7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 (

s)

invocation #

Podilizer performance

build (avg 5.10, sd 0.28)
averaged upload (avg 1.44)

averaged translation (avg 10.67)
averaged grand total (avg 17.21)

Figure 6: Performance timeline of Podilizer on P7

reduce the overhead and could then be implemented in
Termite as well, reducing the differences between both
approaches on the implementation level.

Table 5: Application source and binary code size.
Flavour P7:S P7:B
Original 5.8/14.0 kb 6.2 kb
Lambdafied with Podilizer 89707 kb 604809 kb
Lambdafied with Termite 8391 kb 534573 kb
Podilizer overhead factor 15465 97549
Termite overhead factor 598 86220

6 Discussion

Our findings in automated Java code to Lambda units
transformation look promising for future cloud appli-
cation engineering. The results are also beneficial to
programming education where rather simple object-
oriented applications are in wide use and educators reg-
ularly struggle to keep up with new application hosting
formats and platform services.

Difficulties originate from code that is not prepared

for individual function access. According to a recent
study, at least 20% of Java methods are too accessi-
ble (public instead of protected or private) [VBMP16],
while for our work, they are sometimes too inaccessi-
ble, although the solution to both is the same: powerful
refactoring tools for software engineers. Further diffi-
culties originate from interfacing with the Java virtual
machine, for instance through the classloader, and with
the command-line interface, as well as with data access
with differing file paths.

A comparison between our two approaches, Podilizer
and Termite, is available through Table 6. The com-
monalities in scope and process are contrasting the dif-
ferences in how much control a developer has over the
process. The advantages of the Termite which included
lessons learned from the earlier Podilizer implementa-
tion are clear. Its design foresees for instance the fall-
back invocation of the local method in cases where the
cloud-deployed transformed copy is not available.

Table 6: Comparison of approaches and tool designs.
Approach Language Selective Configurable Failsafe
Podilizer Java no only through AWS CLI no
Termite Java yes yes (annotations) yes

The resulting implementations of the same name are
further compared in Table 7. While Termite is limited
to rather simple code structures, Podilizer handles sev-
eral advanced cases well including exceptions and de-
pendencies between methods, but also weighs in with
more than twice the significant Lines of Code (LoC).
Both tools integrate with Maven and handle common
programming styles such as classes with and without
packages, but Termite currently lacks proper support
for object attributes.

Table 7: Comparison of implementation.
Implementation Deps Exceptions Attributes LoC
Podilizer all transformed transferred 2500
Termite none not considered not considered 1030

With the collected data, answering the research
questions becomes possible. While the answers have
been discussed in context before, the following list sum-
marises the claims.

Answer to RQ1: The economic viability of FaaS de-
pends on the request frequency and load in addition
to the rather volatile pricing model of cloud providers.
In the case of the reference applications, the load gen-
erally justifies the FaaSification when less than 200000
requests per month occur.

Answer to RQ2: The automation is possible al-

16

though keeping the engineer in the loop through con-
trolling annotations and a resulting semi-automation
is preferable. The averaged code coverage ranges from
8% (Termite) to 83% (Podilizer) due to implementa-
tion differences. The averaged overhead figure ranges
from 2131% (Termite) to around 10518% (Podilizer),
and the performance figure from 62 s (Podilizer) to 254
s (Termite).

Answer to RQ3: Annotations are a suitable estab-
lished Java notation which given the current progress
of the field represent the least friction in terms of de-
velopment tooling integration. Triggering the FaaSifi-
cation process through the build system is also consid-
ered suitable, even though alternatives such as explicit
method calls at runtime have not been discussed.

Overall, we believe that the tool designs and imple-
mentations are helpful in accelerating cloud deploy-
ments despite needing more fundamental research on
the OOP to FaaS mapping and tool engineering and
testing. Inspired by the results of using Termite, we
have successfully implemented a basic form of selec-
tive FaaSification to the Lambada tool which performs
static and dynamic transformation for Python applica-
tions [Spi17].

Future work identified by limitations of our ap-
proaches encompasses the handling of dynamic class-
loading, server-side state handling, FaaSification be-
yond Java and Python as input languages and AWS
Lambda as target service, improved developer tooling
integration, as well as optimisations for attribute and
method dependencies including the creation of function
clusters or bundles.

Acknowledgements

This research has been supported by an AWS in Ed-
ucation Research Grant which helped us to run our
experiments on AWS Lambda as representative public
commercial FaaS.

References

[BK12] Alexander Binun and Günter Kniesel. Join-
ing Forces for Higher Precision and Recall
of Design Pattern Detection. Technical Re-
port IAI-TR-2012-01, University of Bonn,
January 2012.

[CV13] Walter Cazzola and Edoardo Vacchi.
@Java: annotations in freedom. In 28th

Annual ACM Symposium on Applied Com-
puting, pages 1688–1693, Coimbra, Portu-
gal, March 2013.

[CZW+15] Zhengong Cai, Liping Zhao, Xinyu Wang,
Xiaohu Yang, Juntao Qin, and Keting
Yin. A pattern-based code transforma-
tion approach for cloud application migra-
tion. In 8th IEEE International Confer-
ence on Cloud Computing, CLOUD 2015,
New York City, NY, USA, June 27 - July
2, 2015, pages 33–40, 2015.

[Har13] Chen Harel. GitHub’s 10,000 Most
Popular Java Projects: Here are
the Top Libraries They Use. on-
line: https://dzone.com/articles/

githubs-10000-most-popular, 2013.

[Plu14] Martin Pluemicke. Functional Interfaces
vs. Function Types in Java with Lamb-
das. In Software Engineering (Workshops),
number 1129 in CEUR-WS, pages 146–147,
Kiel, Germany, February 2014.

[SD17] Josef Spillner and Serhii Dorodko.
Java Code Analysis and Transforma-
tion into AWS Lambda Functions.
arχiv:1702.05510, February 2017.

[Spi17] Josef Spillner. Transformation of Python
Applications into Function-as-a-Service
Deployments. arχiv:1705.08169, May 2017.

[ST15] Nikita Salnikov-Tarnovski. Java ver-
sion statistics: 2015 edition. on-
line: https://plumbr.eu/blog/java/

java-version-statistics-2015-edition,
2015.

[VBMP16] Santiago A. Vidal, Alexandre Bergel, Clau-
dia Marcos, and J. Andrés Dı́az Pace. Un-
derstanding and addressing exhibitionism
in Java empirical research about method
accessibility. Empirical Software Engineer-
ing, 21(2):483–516, April 2016.

[WJUH98] Andrew K. Wright, Suresh Jagannathan,
Cristian Ungureanu, and Aaron Hertz-
mann. Compiling Java to a Typed
Lambda-Calculus: A Preliminary Report.
In Types in Compilation – 2nd Interna-
tional Workshop, volume 1473 of LNCS,
pages 9–27, Kyoto, Japan, March 1998.

17

