
Copyright IEEE. The final publication is available at IEEExplore via https://doi.org/10.1109/CCGRID.2019.00087.

Extensible Declarative Management of Cloud

Resources across Providers

Oleksii Serhiienko, Panagiotis Gkikopoulos and Josef Spillner

Service Prototyping Lab (blog.zhaw.ch/splab/)

Zurich University of Applied Sciences

Winterthur, Switzerland

{serh,pang}@zhaw.ch, josef.spillner@zhaw.ch

Abstract—Tags and labels are annotations on resources in
many commercial public cloud models. Little is known about
the extent of tagging in commercially relevant settings and
there is an absence of automated software to handle tags.
We show that by introducing an extensible tag management
middleware based on cloud functions, tags can be turned into a
powerful declarative means of cloud management. Our universal
connector middleware is demonstrated by a typical deployment
administration scenario involving both AWS and Google Cloud
Platform services.

Index Terms—multi-cloud, cloud management, cloud functions,
tagging

I. INTRODUCTION AND PROBLEM STATEMENT

Multi-cloud and cross-cloud resource management is a field

of increasing interest to researchers and industry which has

emerged out of general multi-cloud abstraction research. It

covers the technical, but also operational and financial aspects

of centralised policies on combining software, platform and

infrastructure services. Its goal is to maximise the utility for

the users (e.g. in companies) while minimising cost, redundant

subscriptions, stray resources and unaccounted service acti-

vation. The different concepts and terminologies which vary

greatly between commercial cloud providers turn multi-cloud

management into a non-trivial process [1], [2].

Within this context, many companies resort to using

tags to differentiate their cloud resources. Tags such as

stage:testing or eol:may2019 are often used or in-

terpreted in practice as notes for administrators and DevOps

teams. Eligible tag names and scopes again differ between

cloud providers, leading to ad-hoc decisions on which tags

to put on which resources. The non-systematic employment

of tags then leads to operational mistakes and does not fully

exploit the automation potential in cloud environments.

To avoid this problem, we contribute a middleware called

Universal Connector with two main functions. First, it man-

ages tags in a secure, audible and cost-effective manner.

Second, it performs best practices cloud management tasks

driven by regulated tags.

In this paper, we first present recent progress on multi-

and cross-cloud resource management middleware to convey

more background information. The concept and design of

Research supported by project Amysta-SaaS/18371.1 by Innosuisse - Swiss
Innovation Agency - and an AWS Cloud Credits for Research grant.

the connector are described next, followed by notes on the

available implementation and the scenario-guided evaluation.

We argue that future multi-cloud management products will

greatly benefit from our extensible design based on cloud

functions which contrasts current monolithic platforms, and

we show the effectiveness of tag-driven management.

II. BACKGROUND AND RELATED MIDDLEWARE

Cloud resource management is one particular angle within

the general field of cloud management which focuses on

allocatable resources and instances, often in combination with

orchestration, data, performance, security and trust [3], [4].

The management takes place within a cloud C or from a

management system M → C. Multi-cloud resource man-

agement (M → {C1, C2}) add challenges to centralised

management due to heterogeneous definitions of resources

across providers. Often, abstraction layers such as Libcloud or

Deltacloud are used to harmonise different APIs and semantics

where one access is routed and translated to one provider at a

time [5]. Generalised cross-cloud resource management (e.g.

C1 → {C1, C2}
∧
C2 → C3) adds parallelism, scheduling,

a distributed dimension and the additional need to manage

the management system itself with cloud tools [6]. While

many multi-cloud and cross-cloud management systems have

been built (e.g. Slipstream, Cloudiator, Cloud Pier, Fog.io,

Terraform, Ansible, Newrelic, ManageIQ, CloudcheckR [7]),

there is no support for regulated tag management and tag-

driven resource management in any of them.

For our analysis, we define cloud resources to be any

resource that can be provisioned on a provider, for example

VM instances, storage buckets or FaaS functions. Likewise,

we define tags to be annotations or labels on these resources

consisting of a key and a value. Cloud resources can be

addressed by type (all), by unique identifiers (single/few) or by

tags (some) in the programming models (e.g. programmable

infrastructure) and interfaces offered by major commercial

providers. Sometimes, the interfaces offers a uniform access

with multiple attributes. For instance, the AWS EC2 API con-

tains a DescribeTags method which can filter according

to the tag key, tag value, tag key-value combination, resource

id or resource type. The response to the method contains a list

of items, each described with resource type, resource id and

matching tag key-value pair.

There appears to be moderate interest in tagging in

most developer communities. On StackExchange’s Server-

Fault site, there are 18 results for the method in conjunc-

tion with the term EC2 compared to 32 for the common

DescribeInstances. On GitHub, the ratio is 58600 code

results compared to 99500. Some of these results reveal that

tags have become popular in private cloud management. In

Kubernetes, a popular container orchestration system, labels

and selectors are central to complexity reduction in large-

scale deployments [8]. Yet, the scope and utilisation of tagging

have not yet appeared in the peer-reviewed literature on cloud

management.

A recent survey on multi-cloud resource management pro-

poses a taxonomy for management classification [9]. While

it includes a sub-taxonomy which determines how to manage

multiple cloud resources, it only considers per-application or

per-task group decisions but not per-tag ones. Broker-based

resource management in dynamic multi-cloud environments

has been proposed but only simulated with CloudSim, omitting

the challenge of how to realise the management in dominant

commercial clouds [10]. A dynamic programming approach

for managing multi-cloud scenarios exists on an algorithmic

level but again lacks the vital discussion of how it could

be realised at scale in actual cloud environments [11]. Fully

implemented system proposals, albeit similarly without a

discussion of tagging, include LambdaLink, a multi-cloud

operation management platform [12].

III. UNIVERSAL CONNECTOR CONCEPT AND DESIGN

We define a Universal Connector in general as extensible

multi-cloud/cross-cloud capable middleware which can per-

form both management and usage tasks related to arbitrary

resources. The focus of this paper is on the management

tasks, in particular those implicitly driven by appropriate

tags on cloud resources. Requirements-wise, the role-based

management tasks encompass the management of tags them-

selves, the tag-driven (de)allocation of resources (often along

with (un)subscription), the aggregation of information about

the current multi-cloud system state including all resources

subscribed to, and the auditing of past actions through a

journal.

To re-use existing implementations and for better com-

parison, we devise an extension architecture for the con-

nector which builds on top of existing middleware but can

also be used stand-alone with restricted functionality. Fine-

grained extensibility in contemporary cloud environments can

be achieved by Function-as-a-Service (FaaS) which allows for

small pieces of code to be glued to existing functionality,

not dissimilar to plugins and glue scripts in conventional

software engineering. Using FaaS, the management overhead

in compute and financial terms becomes zero in periods when

no management is performed according to current commercial

billing models. Consequently, the anticipated universal con-

nector relies on a set of functions to manage cloud resources.

Each function performs work on its own or by wrapping an

existing middleware remote method.

A. Analysis of Tagging Capabilities across Providers

One of the biggest challenges in multi-cloud tag-based man-

agement is that each provider implements tagging in a different

way. When comparing the tagging implementation of different

cloud providers it is immediately apparent that there are dif-

ferences that could prove problematic when managing a multi-

cloud system. There are minor differences in tagging policies

(e.g. number and length of tags allowed) as well as major

differences in how tagging is implemented and by extension

how an administrator can use the tagging interface. A universal

tagging system can thus aid this process by implementing

a ruleset for tags that meets the constraints of all providers

simultaneously, and by providing a single interface through

which to manage tagging across all providers. This way an

administrator can use the tagging features without studying the

internal limitations and constraints of each individual provider.

In our implementation, this is done by providing a common

API tagging method that abstracts the provider-specific details

and provides a uniform interface, and by providing the ability

to apply tags automatically, thus avoiding the procedure of

individually tagging resources and significantly reducing the

possibility of human error. The results of our study on different

tagging mechanisms for three cloud providers – Amazon Web

Services (AWS), Google Cloud Platform (GCP) and Microsoft

Azure – are shown in Table I.

B. Tagging Rules and Example

One of the most important requirements of a tag-driven

management system is its ability to provide consistency of

tagging rules, overcoming inconsistency risks associated to

manually written tags. This is especially true in complex

projects involving a large amount of resources and developers,

particularly in a multi-cloud system. For example, a group of

developers would agree on placing the tag aim:demo on a

number of distributed resources, including shared ones which

existed before, for preparing a critical live demonstration.

After the demo, all resources not also needed for other pur-

poses are to be decommissioned. A number of conditions and

criteria for different resources across providers determine this

functionality. The connector can then automatically generate

tags for all resources that meet the criteria, allowing them to

be organised and managed by tag without error and in relative

safety with regards to overlapping tags.

In order for the auto-generation of tags to be applied, a

set of consistency enforcement rules need to be employed

by the system’s administrator. The auto-generation method of

the connector depends on an idempotent resource metadata

retrieval function which provides sufficient data fields to con-

struct unique identifiers in case the provider does not supply

one. Moreover, by retrieving the entirety of the resource’s

metadata from its provider, it allows for rules to be created

for any field in the metadata.

A ruleset defines per resource type and provider filter a

rule composed of an arbitrary number of conditions plus a

set of tag key-value pairs to be applied in case of a match.

The tag will be applied to any of the resources that comply

TABLE I
COMPARISON OF TAGGING IMPLEMENTATION

Feature AWS Azure GCP

Tags per resource 50 15 64
Length of key 127 512 63
Length of Value 256 256 63
Case sensitive Yes No Lowercase only
API Single tagging API for all supported

resource types
API can tag any resource in a re-
source group

Separate tagging functionality in
each API, group tagging at the
project level

Tagging of multiple resources with
one call

Yes, by providing a list of resources Only by tagging a whole resource
group

Only by tagging a whole project

Terminology Tag Tag Label, a separate ’network tag’ is
used to apply firewall rules

with the conditions. The different conditions have a logical OR

relationship, so in order for the rule to be satisfied, at least one

condition must be met. The statements within a condition have

a logical AND relationship, meaning all statements within a

condition must be met by a resource simultaneously for it to

be compliant with the rule. As such, the logic expression for a

rule consisting of conditions c1 . . . cn can be formalised along

the following scheme:

(c1 : k1 = v1 ∧ c1 : k2 = v2) ∨ c2 : k3 = v3

If the expression is satisfied the method then calls the

appropriate tagResource function and applies the tag to

the resource. The two modes of tag application are comple-

mentary, only adding a tag if no other tag with the same key

exists, or destructively, potentially overwriting values created

manually or in previous auto-tagging invocations.

C. Tagging Algorithm

Listing 1 shows in pseudo-code notation how all resources

within a project or account are tagged according to the defined

rules. The inclusion of short-lived cloud functions happens in

various stages of the algorithm.

Listing 1. Rule-based tagging algorithm
r u l e s , p r o v i d e r s ← r u l e f i l e
r e s o u r c e s t o t a g = []
∀ provider ∈ providers :

r e s o u r c e s m e t a d a t a ↔ c a l l f u n c t i o n t o g e t r e s o u r c e m e t a d a t a
r e s o u r c e s l i s t ↔ c a l l f u n c t i o n t o g e t l i s t o f r e s o u r c e s
∀metadata ∈ resources metadata :

∀ rule ∈ rules :
when r u l e a p p l i e d t o m e t a d a t a :

r e s o u r c e s t o t a g . add t h e r e s o u r c e from
r e s o u r c e s l i s t w i th t h e t a g s from r u l e

∀ tag ∈ resources to tag :
→ c a l l f u n c t i o n t o t a g l i s t o f r e s o u r c e s wi t h t a g

IV. IMPLEMENTATION AND EVALUATION

We have implemented the proposed universal connector in

the context of an industry innovation project which involved

a company selling multi-cloud management solutions. Our

three applied research interests have been the demonstration

of feasibility of tag-driven management, the determination

of runtime overheads and the decomposition of conventional

(monolithic) cloud management functionality into a FaaS-

based approach.

A. Software Architecture

We choose a fine-grained, cloud-native architecture for the

universal connector to be able to offload parts of the manage-

ment functionality into the cloud services next to the resources

to be managed. The offloaded parts are realised as stateless and

short-lived cloud functions. The set of functions along with

wrapper methods and additional methods provided directly

by the connector defines the connector’s HTTP interface

(API) which is discoverable through an OpenAPI specification.

The connector’s behaviour is defined through several human-

readable and -editable YAML files.

The connector is linked to a time-series database acting

as journal. All actions including regularly scheduled queries,

e.g. for checking compliance against best practices rules, are

recorded in the journal for auditing purposes. For a secure

operation, a hash-linked list of records would have to be

produced, whereas the focus of our architecture is to merely

enable the functionality as part of the feasibility demonstration.

In order to satisfy the need for consistent tagging we employ

the auto-tagging functionality that allows us to define a set

of tagging rules in a YAML file. The rules can apply to any

metadata field of each individual resource, across all providers.

These rules are then used by the autoGenerate API

method, a part of the connector that composes several cloud

functions from all providers in order to retrieve all resources

that satisfy the ruleset and to apply the necessary tags to them.

With a well-defined set of rules, just one invocation of this

function can tag every resource across all managed projects

with the right tag to allow for grouping and managing by tag.

Credentials for accessing cloud providers and resources are

similarly managed in YAML files and are passed to the cloud

functions on demand. For a secure operation, both secure key-

stores and encrypted environment variables supported by some

FaaS providers would have to be used.

Multiple universal connectors can be instantiated and man-

aged through a connector broker to map complex organisa-

tional structures to the cloud management operations. More-

over, existing cloud management platforms without tagging

capabilities can be incorporated into the workflow to benefit

from advanced management functionality not available from

the connector itself. Fig. 1 outlines the architecture including

both the functions and the resource access for two cloud

providers, Amazon Web Services (AWS) and Google Cloud

Platform (GCP). Optional parts (broker, multiple connectors,

existing platforms) are marked in grey. The functions deployed

to the various providers are added to the connector by getting

registered to an event gateway that is used to populate the

connector’s endpoints with functions and the events to trigger

them. Then the requests made to the connector reach the

functions via the gateway.

private
cloud

private
FaaS AWS

Lambda
GCP

Cloud
 Functions

func
func

func
func

func
func

AWS GCP

Multi-Cloud Application Deployments

res
res

res

res
res

res

Cross-Cloud
Management

Functions

Cloud
Resources

Universal
Connector 1

Cloud Function Registry

Universal Connector Broker

Multi-Cloud Management Platforms/Middleware

ManageIQ CloudcheckR...

Multi-/Cross-Cloud Management Solution

Universal
Connector n ...

func

func

Fig. 1. Universal connector architecture outlining extensibility through FaaS
and interoperability with existing management platforms

B. Implementation

The connector is implemented as a Python Flask service

in conjunction with a set of functions which are implemented

for both AWS Lambda and Google Cloud Functions (GCF).

We note that there is an arbitrary mapping of functions to

resources depending on the desired functionality and afford-

able implementation effort. In addition to our implementation

of AWS → {AWS,GCP}
∧
GCP → {AWS,GCP}, the

system could be extended to support AWS → Azure and

other combinations.

In compliance with the scenario description, the primary

features of the universal connector are:

• The automatic generation of tags, as detailed previously.

• Retrieval of resources based on their tags. This function

of our API can retrieve information on resources of any

type on any provider, based on the tags applied to the

resource. These can include, but are not limited to, the

auto-generated tags.

• Indubitably the most important feature of the multi-tag

service is the capability to manage resources by tag. This

function can invoke a number of resource management

cloud functions from both providers. These functions in

turn act on all resources with the specified tag. Managed

resource actions supported currently include starting and

stopping a set of VMs and deleting either VM instances

or cloud functions.

Due to absence of field studies, there are no default

rules; rather, specific rules need to be set in each scenario.

Listing 2 exemplifies an example of a rule which can be

included in the rules.yaml file used by the API method

/tags/autoGenerate:

Listing 2. Auto-tagging rules

r u l e 1 :

type : i n s t a n c e

p r o v i d e r s : [p r o v i d e r 1]

c o n d i t i o n s :

c o n d i t i o n 1 :

ImageId: example id

InstanceType : t 1 2 . micro

c o n d i t i o n 2 :

CpuOptions . CoreCount: 12

t a g s :

aim: demo

This is a rule for applying the tag key-value pair aim:demo

to VM instances belonging to provider1 whenever either

the core count equals 12 or the image id matches for any

instance of type t12.micro. The provider itself is described

separately within the same file.

C. Initialisation and Bootstrapping

Owing to the light-weight and composite design of the

connector, its startup phase is of particular interest.

On the connector side, the distributed value store etcd,

the Kubeless extension to run cloud functions, the Serverless

Framework’s Event Gateway and the InfluxDB timeseries

database are launched. Finally, the connector’s Docker con-

tainer is built on-demand and deployed into the Kubernetes

cluster.

The multi-tag management functions

(aws_get_functions, aws_get_instances, etc.)

are then deployed through the Serverless Framework and

its event gateway to either AWS Lambda or GCF, or even

to both providers redundantly. These functions are multi-

cloud capable and cross-reference all accounts subject to

be managed through adequate credentials which are either

passed along with the function code and configuration, or

supplied on a per-request basis to lower the attack vector.

The setup procedure moreover registers all deployed func-

tions in the connector’s command registry. At any time, the

registry and the rules database can be updated.

D. Scenario

We construct an application which consists of 4 VMs, two

each hosted in AWS EC2 and GCP/GCE, and 4 functions,

two each hosted in AWS Lambda and GCF. Our universal

connector is run on a third, independent host, based on a

Kubernetes environment through Minikube referred to by uc.

The scenario encompasses two roles, application provider

(administrator) and auditor.

The bootstrapping is automated with Just scripts.

By invoking just multitag-start, the universal

connector is fully initialised. The administrator first lists

the resources in a multi-cloud way, finds out about missing

tags, and invokes the auto-tagging based on default rules

with tag demo. by invoking the appropriate methods

(http://uc:5000/resources/getInstances,

http://uc:5000/resources/getFunctions,

http://uc:5000/tags/autoGenerate).

Then, after some time, these resources are no longer

needed and the administrator conveniently stops them

based on the demo tag. The API is queried for this

purpose using either the getByTag or manageByTag

methods. On the command line, this may look like the

following invocation: curl -X POST -d ’"action":

"stop", "key": "aim", "value": "demo"’

http://uc:5000/resources/manageByTag.

Afterwards, the administrator shows the activity journal

to the company’s compliance officer to demonstrate

that all resources have indeed been disposed by

invoking http://uc:5000/journal. Finally, the

administrator finds out that one resource is going to

be re-used in production, and manually tags it with

production, i.e. curl -X POST -d ’"ids":

["id1"], "tags":["key": "aim", "value":

"production"]’ http://uc:5000/tagResource.

Listing 3 outlines the structure of the audit log, omitting

some precision information for brevity. While in our prototype

it is not tamper-proof, it could be implemented using a linked

hash list to accommodate legal compliance requirements.

Listing 3. Audit log excerpt
t i me e n d p o i n t r e s u l t u s e r
−−−− −−−−−−−− −−−−−− −−−−

1550516236 / t a g s / Au toGene ra t e [’ s u c c e s s ’] a u t o
1550516261 / t a g R e s o u r c e [’ f a i l ’] admin

E. Evaluation

The diagram in Fig. 2 shows the time flow for the tag auto-

generation process. Once the data is fetched from the YAML

file which is structured as is described above, the related

data for each provider is sent as parameter to an instance of

the function which queries metadata and lists instances. The

results are compared with conditions defined in the rules. The

list of resources which matches the rules is sent jointly with

related tag information as request body to the corresponding

tagResource function call.

0.006

0.976

2.068

2.716

3.419

4.596

5.122

read data from YAML file

get instances metadata

get list of all instances

tag instances

tag
functions

get functions
metadata

get all
functions

5.131 write data to journal

Fig. 2. Time diagram for tag auto-generation

As can be inferred from the diagram, the initial and final

actions of reading configuration data and writing audit log

data do not cause any delays whereas all intermediate actions

contribute to a multi-second process. Possible optimisations

include the introduction of multi-threading and more aggres-

sive caching.

In order to measure the overhead of the FaaS-based de-

signs, the resource management functions are compared to

synchronous resource modification through the CloudcheckR

management platform which offers functionally equivalent

commands. Figures 3 and 4 demonstrate the temporal be-

haviour of interacting with CloudcheckR with and without

Lambda functions and therefore the overhead using cloud

functions to perform API calls. From the graphs, it becomes

apparent that a small overhead can be introduced. In the

first case in Fig. 3, the execution time is small in absolute

numbers but expressed as percentage the difference looks more

significant with 22% slowdown due to the involvement of

functions. However as indicated by the distribution and mode

in Fig. 4, the relative overhead is only 2.5% and functions

may even lead to a slight speedup.

Fig. 3. Performance overhead for resource creation

Fig. 4. Performance overhead for resource deletion

V. SUMMARY, RESOURCES AND FUTURE DIRECTIONS

We have introduced a middleware design and system for

cross-cloud management which can execute entirely within the

target cloud platform through short-lived cloud functions. The

main capability of the system is to manage cloud resources by

tags. While the software is currently not publicly available for

commercial reasons of the implementation partner company

with whom we conducted the work, we expect that the con-

ceptual descriptions given in this paper inspire future system

designs to become similarly light-weight and extensible.

An explanatory screencast video is provided online in

the Service Prototyping Research Videos collection1 while

a second video explains the extension of cloud management

platforms with cloud functions2.

A consequent enhancement of the presented approach would

be to exploit code generation from the OpenAPI specifications

to further reduce the implementation effort within the cloud

functions, and to implement code for business alignment.

Another enhancement concerns the economic exploitation

of operating cloud brokers and connectors. The basic unit

1Video on tag-driven cloud management: https://www.youtube.com/watch?
v=YAwA92LPFEE

2Video on management platforms: https://www.youtube.com/watch?v=
VaFTDbz8mxw

of billable activity for the FaaS offering of both providers

is invocations per month. AWS provides the first 1 million

requests per month for free and charges 0.2$ per million

thereafter. GCP similarly provides 2 million invocation per

month for free and charges 0.4$ per million thereafter. These

prices are further modified by compute time and memory used

per request. In contrast, CloudcheckR’s pricing is 2,5% of

the customer’s cloud bill for their management functionality

which could be achieved with an appropriate short-lived cloud

function retrieving the per-tag monthly cost. According to

our initial findings, this would work well with AWS but is

more challenging in GCF due to the non-global tag model. A

direct comparison of these two models however is not possible

without an in depth analysis of a particular use case for each

of them, as they demonstrate very different strategies.

REFERENCES

[1] Paul Alpar and Ariana Polyviou. Management of Multi-cloud Com-
puting. In Global Sourcing of Digital Services: Micro and Macro

Perspectives - 11th Global Sourcing Workshop 2017, La Thuile, Italy,

February 22-25, 2017, Revised Selected Papers, pages 124–137, 2017.

[2] Mathias Slawik, Christophe Blanchet, Yuri Demchenko, Fatih Turkmen,
Alexy Ilyushkin, Cees de Laat, and Charles Loomis. CYCLONE:
The Multi-cloud Middleware Stack for Application Deployment and
Management. In IEEE International Conference on Cloud Computing

Technology and Science, CloudCom 2017, Hong Kong, December 11-14,

2017, pages 347–352, 2017.

[3] Sukhpal Singh Gill and Rajkumar Buyya. SECURE: Self-Protection
Approach in Cloud Resource Management. IEEE Cloud Computing,
5(1):60–72, 2018.

[4] Merlijn Sebrechts, Gregory van Seghbroeck, Tim Wauters, Bruno Vol-
ckaert, and Filip De Turck. Orchestrator conversation: Distributed
management of cloud applications. Int. Journal of Network Management,
28(6), 2018.

[5] Beniamino Di Martino, Giuseppina Cretella, and Antonio Esposito.
Cross-Platform Cloud APIs. In Cloud Portability and Interoperability.
Springer, 2015.

[6] Daniel Baur and Jörg Domaschka. Experiences from building a cross-
cloud orchestration tool. In Proceedings of the 3rd Workshop on

CrossCloud Infrastructures & Platforms, CrossCloud@EuroSys 2016,

London, United Kingdom, April 18-21, 2016, pages 4:1–4:6, 2016.

[7] Victor Ion Munteanu, Calin Sandru, and Dana Petcu. Multi-cloud
resource management: cloud service interfacing. J. Cloud Computing,
3:3, 2014.

[8] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. Borg, Omega, and Kubernetes. Commun. ACM, 59(5):50–57,
2016.

[9] Juliana Oliveira de Carvalho, Fernando Trinta, Dario Vieira, and Omar
Andrés Carmona Cortes. Evolutionary solutions for resources manage-
ment in multiple clouds: State-of-the-art and future directions. Future

Generation Comp. Syst., 88:284–296, 2018.

[10] Naidila Sadashiv and Dilip Kumar S. M. Broker-based resource
management in dynamic multi-cloud environment. IJHPCN, 12(1):94–
109, 2018.

[11] Antonio Pietrabissa, Francesco Delli Priscoli, Alessandro Di Giorgio,
Alessandro Giuseppi, Martina Panfili, and Vincenzo Suraci. An ap-
proximate dynamic programming approach to resource management in
multi-cloud scenarios. Int. J. Control, 90(3):492–503, 2017.

[12] Kate Keahey, Pierre Riteau, and Nicholas P. Timkovich. LambdaLink:
an Operation Management Platform for Multi-Cloud Environments. In
Proceedings of the 10th International Conference on Utility and Cloud

Computing, UCC 2017, Austin, TX, USA, December 5-8, 2017, pages
39–46, 2017.

