
Zürcher Fachhochschule

Selective Java Code
Transformation into AWS Lambda
Functions

Serhii Dorodko and Josef Spillner
Zurich University of Applied Sciences,
School of Engineering, Service Prototyping Lab
(blog.zhaw.ch/splab), Switzerland
{dord,josef.spillner}@zhaw.ch

Serhii Dorodko 20.12.2018

Zürcher Fachhochschule

Motivation:

FaaS is a completely new and promising paradigm which requires
specific knowledge for developers.

- Provider tied development model
- Data exchange model
- Runtime restrictions
- Packaging and deployment model

Legacy code to be transformed into a new model with less resources
consumption.

Zürcher Fachhochschule

Podilizer:

The initial research idea was to provide fully-automated approach to
transform existing java-code into Lambda functions.

- CLI tool
- Input: Java project
- Output: Appropriate set of Lambda functions deployed

The approach shows satisfying results only with small projects due to
complex dependency management and java-specific features

Zürcher Fachhochschule

Moving to selective transformation:

After the experience gained in Podilizer we decided to use annotation
mechanism.

- Inspired by Spring framework which is a good example of
annotation usability

- Gives more control in FaaSification process in a simple and
understandable way

- Is a part of a language

Zürcher Fachhochschule

Research Questions:

RQ 1 : Is it economically viable to run a Java ap-
plication entirely over FaaS?

RQ 2 : Is it technically feasible to automate this pro-
cess?And if so, which percentage of code coverage can
be expected, which performance can be achieved, and
which code is easier, hard or impossible to convert?

RQ 3 : Is there a friction-free integration with estab-
lished Java development notations and processes?

Zürcher Fachhochschule

Challenges:

Disassembling java code into functions caused non trivial task to
solve. In most of the cases each method has a state that needs to be
handled, providing functionality correctness.

Lambda programming model allows to consume and send objects, so
we used it to:

- Exchange current state of an object while requesting function
- Return state together with the return result to update the state

 Class.handleRequest(input, output, context)

Zürcher Fachhochschule

FaaSification Pipeline:

A - static code parsing and analysis
D - decomposition into functional units
F -source-to-source translation of the functional units into FaaS
units
C - compilation and dependency assembling of these units
U - upload, deployment and configuration
V - verification

Zürcher Fachhochschule

Termite Design:

G1 - Generation of functions
G2 - additional sources
C - compilation
U - Upload

B -build
I1 - invocation of the annotated
Java application
I2 - invocation of hosted function
invocation

Zürcher Fachhochschule

Implementation:

This schema shows the
interaction of Termite with
code during the compilation
and runtime phase.

method1() - annotated

method2() - not annotated

Zürcher Fachhochschule

Code transformation:

Zürcher Fachhochschule

Experiment setup:

The reference input project set consists of six software
applications which represent the large variety of Java software
engineering, ranging from 28 to 771 significant lines of code (SLOC).

The software projects are:
- graphical window with buttons (P1)
- mathematical functions (P2)
- calculation of shipping containers and boxes (P3)
- public transport information (P4)
- image processing (P5)
- domain-specific language parsing and evaluation (P6)

An artificial project consisting of 100 numbered Java
hello world methods is used as additional comparison
point

Zürcher Fachhochschule

Results:

Lambdafication pipeline characteristics (quality) for P1–P6 with Termite

Application source code size comparison before/after using Termite

Zürcher Fachhochschule

Conclusion:

Our findings in automated Java code to Lambda units
transformation look promising for future cloud application engineering

Collected in the experiments data shows, that FaaSification
process is not trivial and brings significant challenges for automated
migration of a legacy code into the Functions. However, we believe
that the tool designs and implementations are helpful in accelerating
cloud deployments despite needing more fundamental research on
the OOP to FaaS mapping and tool engineering and testing.

