
Copyright IEEE. The final publication is available at IEEExplore via https://doi.org/10.1109/CloudCom2018.2018.00032.

Systematic and recomputable comparison of

multi-cloud management platforms

Oleksii Serhiienko and Josef Spillner

Service Prototyping Lab

Zurich University of Applied Sciences

Winterthur, Switzerland

oleksii.serhiienko@gmail.com, josef.spillner@zhaw.ch

Abstract—With the growth and evolution of cloud applications,
more and more architectures use hybrid cloud bindings to
optimally use virtual resources regarding pricing policies and
performance. This process has led to the creation of multi-
cloud management platforms as well as abstraction libraries.
At the moment, many (multi-)cloud management platforms
(CMPs) are designed to cover the functional requirements. Along
with growing adoption and industrial impact of such solutions,
there is a need for a comparison and test environment which
automatically assesses and compares existing platforms and helps
in choosing the optimal one. This paper focuses on the creation
of a suitable testbed concept and an actual extensible software
prototype which makes multi-cloud experiments repeatable and
reusable by other researchers. The work is evaluated by an
exemplary comparison of 4 CMPs bound to AWS, showcasing
standardised output formats and evaluation criteria.

Index Terms—cloud management platform, multi-cloud,
testbed, recomputation

I. INTRODUCTION

Managing bindings to multiple cloud services for one or

many software applications is a crucial task for companies in

order to forecast subscription spendings, exploit volume dis-

counts, and remain auditable as data processing is outsourced

to a multitude of software and platform providers [1]. Many

concepts of the resulting hybrid-cloud management (HCM)

and the generalised form of multi-cloud management (MCM)

transitioned from academia into the business environment just

recently [2]–[4]. Already, the number of widely deployed

cloud management platforms (CMPs) is continuously growing.

Similarly, their functional scope increases with brokering,

access unification, metrics aggregation and effective policy

enforcement being among the features. The perceived business

benefit of these platforms is to abstract one or more cloud

provider interfaces for centralised management of virtual re-

sources. Moreover, from a financial management perspective,

they offer a centralised billing system capable of multi-tenant

charging within companies.

With the increasing complexity of distributed applications

which are running on cloud deployments, the practical aspects

of operating multi-cloud management topologies involving

CMPs still overwhelm many businesses [5]. Different plat-

forms offer diverging functionality with varying policies of

Research in education linked to funded project Amysta-SaaS/18371.1 by
Innosuisse - Swiss Innovation Agency - and an AWS Cloud Credits for
Research grant.

pricing, as well as with varying levels of performance. There

is no standard benchmark and no standardisation of the envi-

ronment for the evaluation of centralised CMPs, even though

productivity is a critical factor for today’s applications.

CMPs as well as simpler application programming in-

terface (API) abstraction libraries with multi-cloud support

are currently produced and maintained by many middleware

vendors, such as Red Hat, Apache and Cloud Foundry, as

well as by specialised CMP vendors such as CloudcheckR

and RightScale. Depending on the complexity, functionality

and architecture of a particular middleware, it induces load

into the system in different ways. This work defines three

types of middleware which are all delivering a certain level

of abstraction for cloud and virtual resource management as

well as pooling of multiple providers and their offerings.

• SaaS - Multi-cloud platforms which are running remotely

on the service provider side, providing management plat-

form as a service. The only way to access them is via

their public endpoints.

• Open-source/installable - Multi-cloud platforms which

can be executed by operators locally or remotely. In most

cases, the vendors provide executable container images.

• Library - Multi-cloud API libraries developed for partic-

ular language for direct integration in applications.

CMPs encompass both SaaS and open source platforms,

where the platform functionality ranges from simple protocol

translation proxies to user-friendly web-based management

tools. In most cases, more than one role is defined. For

instance, operators run the solution, developers access the

translation and pooling functionality, and company executives

read generated reports about incurred cost.

It is not trivial to compare CMPs since many of them

are still in early development and they fulfil different goals.

However, the systematic evaluation of common functionalities

of the systems which support equal subsets of providers brings

a complete picture of the current state of technology and is

valuable for companies who need to take decisions and, once

taken, need to avoid regressions. Such comparison would be

valid for example to measure the time needed for creation and

synchronisation of a specific virtual machine in AWS EC2.

Hence, this paper describes the challenges and proposes an

approach and system implementation for comparative CMP

evaluation. The primary objective of this work is to deliver

a centralised and standardised software solution for testing

numerous platforms, for comparing results and for condensing

output as tables or graphs. Furthermore, the results can be eas-

ily exploited and extended by other researchers and developers

working with continuous integration as all experiments are

reusable and recomputable. This design follows recent tooling

support for recomputable science [6]. Concretely, our work

presents a CMP testbed focused mostly on:

• Execution time for a specific cloud management request

• System consumption: CPU and memory

The research aim of this work is thus to systematise the

approach of testing and comparing different CMP functionali-

ties, to increase reproducibility beyond current approaches, and

to experimentally evaluate the approach with representative

scenarios.

The remainder of the paper is structured as follows: The

second section, Related Work, analyses published academic

works which focus on the evaluation of particular platforms.

It defines needs and requirements reflected in solutions to

relevant cloud management problems. Architecture Design

and Implementation describes the classification of CMPs and

abstraction APIs concerning the testbed design, an approach of

creating extensible software, and the testbed implementation

including high-level architecture and workflow. Experiments

and Exemplary Results focuses on a description of a repre-

sentative experimental setup of the CMP testbed and presents

result from one exemplary analysis in the form of generated

tables as well as visualised as graphs to demonstrate the

testbed’s capabilities. The final section concludes with links to

the open source implementation and to the reference datasets.

II. RELATED WORK

Most of the relevant works were systematically selected by

keyword search from DBLP [7]. The main criteria for filtering

results were relevance to the topic and contribution of practical

results involving API abstraction libraries and CMPs.

The topic of advancing multi-cloud management has been

raised repeatedly in the scientific community. One of the major

early works which analyses existing abstraction libraries in

detail is ’An Empirical Study for Evaluating the Performance

of Jclouds’ [8]. In this study, the primary focus is mea-

suring the Apache Jclouds multi-cloud toolkit for Java [9].

Performance results are compared with results from platform-

specific libraries and cloud vendor software development kits

(SDKs). The expressed goal of the study is to provide a

controlled experiment which assists developers in making

decisions when the key concern is performance. To achieve

such a goal, a 115 KB file is uploaded to Amazon AWS and

Microsoft Azure endpoints using Jclouds and the platform-

specific equivalents. For the null hypothesis, it assumed that

the download time for a file through Jclouds is equivalent to

the download time through the platform-specific library. As a

result, the authors present relationship graphs of the number

of requests and the resulting uploading time. In conclusion,

the authors pointed out that the library’s performance depends

on the cloud services. In the experiments, Jclouds was faster

compared to the AWS-specific SDK but worse compared to

the Azure-specific SDK.

The same authors have recently expanded the work and pub-

lished ’An empirical study for evaluating the performance of

multi-cloud APIs’ [10]. Again, the performance is measured,

but in the expanded study two multi-cloud APIs are covered

by adding the Apache Libcloud [11] library. Furthermore,

file sizes are checked across a more representative range of

155 KB, 310 KB, 620 KB, 1240 KB and 2480 KB. In addition

to the previous time evaluation criteria, both CPU time and

memory allocation are considered, and in addition to download

times also upload times are measured. This work is thus much

more expressive and covers more relevant problems. In the

results, it becomes evident that the performance of multi-

instrument clusters is strongly off-limits from the platform-

specific libraries. Jclouds is slightly worse in performance

compared to the SDKs, while Libcloud is better in most

experiments. In multi-cloud library selection, the main effort

should therefore be on comparing particular attributes depend-

ing on the use case. However, the testbed remains focused

on few operations and is neither extensible nor suitable for

reproducing results over time.

A similar work is ’Critical evaluation on Jclouds and Cloud-

ify abstract APIs against EC2, Azure and HP-Cloud’ [12]. In

this document the primary objective is stated as follows:

• Analyse the problem and the current literature as well as

ask questions that will form the basis for evaluating the

abstract APIs.

• Create a tool for analysis of abstract APIs based on

questions and criteria that are highlighted in the current

literature analysis.

• Create a prototype tool that will evaluate Jclouds and

Cloudify.

As a result, the authors present cloud evaluation tables com-

paring multi-cloud API abstraction libraries and conclude that

using abstract interfaces, most of the measured cloud criteria

improve.

More recently, ’SeaClouds: An Open Reference Architec-

ture for Multi-cloud Governance’ [13] has emerged from

a European research consortium as overlay architecture on

top of Jclouds, Cloud4SOA, TOSCA and other multi-cloud

approaches but has yet to be experimentally evaluated for

practical usefulness.

According to the screened literature, it is evident that the

existing works do not fully match the increasing practical

relevance of the topic and that most solutions do not present

an extensible test environment ready to be used by developers.

In this work, we will raise the matching by contributing our

solution and architecture with which it is possible to optimise

and automate the performance tests for evaluation.

III. TESTBED DESIGN, ARCHITECTURE AND

IMPLEMENTATION

The design of our testbed is inpired by an existing testbed

for grid environments [14] which describes a highly config-

urable real-life experimental architecture that can be controlled

and monitored directly. A key assumption is the testing and

benchmarking of large distributed systems with numerous

parameters and complex interactions between resources which

makes analytical modelling impractical. We conjecture that

for complex cloud computing environments, a similar design

philosophy applies. Hence, we first present design criteria

for multi-cloud management evaluation, derive a suitable

architecture, systematically select management platforms to

evaluate prototypically, and summarise the implementation, its

workflows and its extensibility.

A. Design criteria

Considering the emerging need to offer more insight into

CMPs to developers and to improve the quality of research

on CMPs, we design our testbed, called CoMParable CMPs

(CMP 2), in a way which directly addresses two target

groups. For software developers, as a ready-to-use open source

toolkit which produces easy to understand reports; and for

researchers, as a testbed for recomputable and comparative re-

search enablement which produces statistically sound datasets

ready for inclusion into articles, as we will expose in the next

sections. For both target groups, low-effort extensibility for

additional CMPs and the ability to publish the delta compared

to the base version is another requirement which our design

meets.

These requirements lead to the following distinct design

considerations:

• Comfort: The testbed should have a high degree of

automation and generate post-processed data on its own.

• Statistical correctness: Through repetitive invocations and

outlier detections, users should be able to rely on the

numbers produced by the testbed.

• Reproducibility: By presenting an open source proto-

type with light-weight configuration, experiments can be

conducted in collaborative scenarios in which critical

discussions about multi-cloud management can be guided

by reproduction of previous experimental results. In par-

ticular, by offering a software tool, experiments can be

repeated and automatically recomputed.

• Extensibility: As we only implement a prototype for some

CMPs, it should be easy for software or lab engineers

to extend the testbed both for new CMPs and for new

methods per CMP.

B. Architecture approach

The designed testbed aims to improve the quality of re-

search overall and particularly aims to create an environment

which would create mostly-deterministically repeatable set of

experiments for management platforms specifying authenti-

cation data (credentials, tokens or access keys) with simple

YAML files. These files contain instructions about in which

order, on which platforms, how many times should particular

experiments be repeated. Based on the experiment, CMP 2

generates standardised output as raw and averaged metrics

data, graphs and LATEX tables.

During the experiment design process, every action which is

supposed to be evaluated should be described with respect to

the architecture using code-level decorators which are wrap-

ping interpreted methods. These language-specific decorators,

also named annotations, offer convenient pre-execution hooks

for methods which receive the method instance as parameter

(e.g. @decorator def method ...). There is a set of

decorators for defining the methods and metrics which are

extracted from the experiments, as follows:

1) Timing decorator: Created for simple time calculation

of a particular method execution.

2) Docker consumption decorator: Has an input parameter

expecting the list of containers, based on which it will collect

the metrics of CPU time and used memory via the Docker

API for each container.

3) Interpreter-level consumption decorator: Also collects

the use of the CPU time and main memory, but unlike the

Docker decorator, these values refer not to the container

but rather to the embedding interpreter process which is

determined automatically.

4) Tagging decorator: This decorator has a double benefit.

The first one is for the more convenient output of information

in the form of a JSON structure and further easier parsing.

The second one is for registering and mapping all the methods

which use it. As a result, a map of all methods and tags are

recorded in a global variable which is necessary for the next

steps in the experiment workflow.

C. Platforms classification and choice

For the prototype of the test environment and the de-

termination of the workflow process and architecture, three

manifestations of CMPs are distinguished: SaaS in the form of

web platforms, containers as technical realisation of installable

platforms, and libraries despite not strictly offering platform

functionality.

1) Web Platforms: Web platforms are understood to offer a

remote access point. By using platforms, there is regularly no

opportunity to measure the CPU time and memory consump-

tion; instead, clients can only measure the execution time of

the query or process including any connection overhead due

to network latency. In this paper, as a representative example,

the CloudcheckR service [15] is used although other services

could be integrated in a similar way. CloudCheckR provides an

associated management platform for cost management, AWS

inventory, continuous security and compliance auditing across

all subscribed AWS services. It also provides comprehensive

visibility into a user’s cloud environment including billing de-

tails, resources, multi-accounts, services, configurations, logs,

permissions and changes. Although CloudcheckR is a com-

mercial offer, it belongs into the category of services offering

limited (14-day) trial access which makes it suitable for basic

comparison experiments. To gain access, it is necessary to

create an admin access key which is then entered into the

testbed’s configuration file.

2) Libraries: Libraries are language-specific aggregators of

several cloud platforms for standardised and straightforward

access and management. As evaluation example, we are using

the previously mentioned Libcloud which is a library for

interacting with many of the popular cloud service providers

using a unified API. Libcloud was created to make it easy for

developers to build products which work between any of the

services that it supports. Compared to other platforms, libraries

are the easiest to use due to the avoidance of any service setup

and operation, and since the cloud management functionality

runs in-process on the local machine, it is possible to test the

performance in-process directly within the testbed.

3) Containers: There are two categories of containerised

CMPs which are differentiated in the following.

Composed Containers. Platforms which are running with

the help of orchestrators such as the ’docker compose up’

command are composed of multiple containers. An example

is MistIO [16] which is managing a mix of public and

private clouds, hypervisors, containers and bare metal, trying

to optimise cost and policies across platforms but also pro-

viding visibility and control to govern more easily various

infrastructures consistently. The main features of container

compositions are:

• Control hybrid environments

• Enable self-service

• Keep track of usage and cost

• Workflows automation

Single Container. The platform consists of a single container

image so that it is typically invoked through the docker run

command. As an example, ManageIQ [17] is a platform which

is encapsulated into one single image. Functionally, it is an

open-source management platform which delivers the insight,

control, and automation that enterprises need to address the

challenges of managing hybrid IT environments. It has the

following feature sets:

• Insight: Discovery, monitoring, utilization, performance,

reporting, analytics, chargeback and trending.

• Control: Security, compliance, alerting, policy-based re-

source and configuration management.

• Automate: IT processes, tasks and events, provisioning,

workload management and orchestration.

• Integrate: Systems management, tools and processes,

event consoles, web services.

In both cases, single and composed containers, system charac-

teristics such as consumed CPU time and memory allocation

can be extracted efficiently through the container orchestrator

interfaces such as the open Docker API.

D. Testbed implementation

We have implemented the testbed in Python due to the

ability to natively interact with the Libcloud API. Inside

every evaluation client, the method for evaluation should

be wrapped by several decorators that are defined above.

Each method, regardless of its functionality and classification,

has at least two decorators. The timing decorator should be

at the lowest level so that time is calculated only for the

method itself and not for other decorators. Conversely, the

tagging decorator belongs at the highest level to systematise

the output and results of all decorators. When passing a

parameter to this decorator, the correct format is as fol-

lows: ’NameOfProvider:NameOfResource:Action’, where ’*’

stands for ’any’. For example, ’*:system:start’ means that

this method is responsible for the start of the system, and

’aws:provider:create’ defines a method for creating an AWS

provider. Between these wrappers, there can be an arbitrary

number of additional decorators. The evaluation of Libcloud

uses a specially written decorator for the use of resources by

the Python interpreter, while for the Docker-based platforms

a decorator for the Docker resource consumption is used.

E. Workflow

While a number of detailed UML diagrams are available as

documentation in the open source implementation, this section

presents the general architecture and workflow in Figure 1.

When the CMP 2 testbed starts, all the methods that are placed

in source files within the directory classes are initialised (steps

1 and 2). All methods with their description are saved in

a global map variable. Subsequently, the configuration file,

as well as an associated configuration matrix, are loaded

(steps 3 and 4). The configuration file contains the information

necessary for authorisation, for example, a secret key and an

access key for Amazon AWS, an access key for CloudcheckR,

and similar credentials. The matrix is designed to simplify and

systematise tests and experiments for multiple platforms. The

matrix file format is given in Listing 1.

Fig. 1. Architecture and workflow of CMP evaluation testbed CMP 2

Listing 1. Configuration matrix format

m i s t i o :

r e p e t i t i o n s : 50

o u t p u t d i r : / home / ubun tu / e x p e r i m e n t s

cmps: [m i s t i o]

p r o v i d e r s : [aws]

pre experiment :

system :

−s t a r t

pos t exper iment :

system :

−s t op

a c t i o n s :

prov ider :

- c r e a t e

- l i s t

- d e l e t e

This YAML structure is interpreted as follows: Create an

excerpt under the name of ”mistio”, which will save all

the results in the compound directory /home/ubuntu/experi-

ments/mistio, perform all the experiments only for the MistIO

platform and for the AWS provider, start the system before the

start of the evaluation, and at the end also stop. Conduct the

experiments on the provider (AWS) by creating the provider

object within the CMP 50 times (by default), show the result,

and delete the provider object again.

After reading all the files (configuration and matrix) and

creating a common register with the decorator, these data are

combined and tests are produced one by one. In parallel, when-

ever results are ready to be consumed, they are dynamically

stored in the specified folder (steps 5 and 6). In the last step,

from the raw data obtained during the experiment, graphs and

tables are generated which compare the individual functions

and lead to standardised and comparable result representations.

F. Extensibility

The architecture is very flexible and allows for adding new

CMPs as well as characteristics for comparison with low

effort. The current implementation demands the placement

of additional handler files on the code level, as well as

the registration of the handlers in a central file. The code

is already prepared for extensibility at other levels as well.

Given the ubiquity of portable encapsulated system contain-

ers in applied software research and software development

[18], a layered container image could be constructed where

publications would reference specific layers to maintain the

reproducibility. With the matrix file, it is also possible to

create any experiment with the most unusual conditions and

arbitrary order to evaluate functions and actions without any

code changes.

IV. EXPERIMENTS AND EXEMPLARY RESULTS

In this section, we depict in an exemplary setup how

researchers can use CMP 2 to compare cloud management

platforms and gain more insight about multi-cloud applica-

tions. All tables and graphs in the section are directly produced

by CMP 2; a complete reference dataset is available as online

addendum.

A. Experimental setup

All experiments were launched on a virtual machine running

on a private OpenStack cluster with the following character-

istics:

RAM 4 GB
VCPUs 2 vCPUs clocked at 2500 Mhz
Disk 40 GB
OS Ubuntu 16.04.4 LTS

Tests were conducted with each CMP in 50 rounds. As

evaluation criterion for demonstrating the test environment,

system tests such as download, start, stop, delete were used.

Since CloudcheckR is a web-based platform, it was not tested

for these characteristics. Each platform worked with an out-

of-order provider (service abstraction, e.g. EC2 or S3) on

AWS servers, with the same region and access keys. All of

the platforms were tested for creation, listing and deleting

providers. Further, ManageIQ and CloudcheckR were tested

for their synchronisation time because of their architecture

design making it a significant metric. The following versions

of the platforms were used in this experiments:

Mist.io Cloud Management Platform version: 2.0
ManageIQ gaprindashvili-3
CloudcheckR last update May 21, 2018
Apache Libcloud version 2.3.0

For this exemplary set of experiments, one single matrix file

was used, although more complex experiments with multiple

matrix files are possible to evaluate additional dimensions such

as memory constraints across all CMPs.

B. Exemplary Results

The architecture of the testbed is designed so that runtime

overhead is minimal and can be neglected for almost all use

cases. This effect can be inferred from the minimum overhead

results caused by abstraction libraries shown in the subsequent

graphs. All the information which is given below, such as

graphics and tables in the LATEX format, are generated by

the CMP 2 testbed itself. In this part, there will be no in-

depth analysis of the data, since comparing different types

of platforms along different dimensions is out of scope for

this paper. The purpose of this work is rather to provide

an approach to creating a reusable testbed for multi-cloud

management platforms so that other researchers can achieve

and convey their findings.

Table I shows the results of timing evaluation from which

the conclusion is that Libcloud performs the fastest system

operations since it is a lean library and with a much simpler

structure than other middleware, especially long-running plat-

forms. MistIO is a multi-image docker platform and because of

this design falls behind ManageIQ in the boot time, but shows

better results for start and termination of the platform. Hence,

using CMP 2, an exemplary finding produced experimentally

by data analytics based on raw numbers output by the testbed

could be that MistIO is suited better for occasional use in

dynamic environments. Fostering such results with the general

availability of experiment tools helps to better design and

implement next-generation CMPs.

TABLE I
TIME CRITERIA EVALUATION

src action platform
metrics
time (s)

mu sigma median

*
-s

y
st

em

download
manageiq 1.06e+05 1.32e+05 8.21e+04

libcloud 1717.40 120.34 1711.85

mistio 4.25e+05 7.21e+05 2.58e+05

start
manageiq 2.00e+05 2455.44 1.99e+05

libcloud 3430.90 218.90 3445.10

mistio 7.93e+04 2927.29 7.86e+04

stop
manageiq 654.38 92.43 645.32

libcloud 1575.64 125.65 1580.09

mistio 1.84e+04 483.24 1.83e+04

remove
manageiq 3670.05 185.47 3669.37

libcloud 1.99 1.89 1.45

mistio 6.28e+04 7756.02 6.08e+04

aw
s-

p
ro

v
id

er

create

cloudcheckr 2411.50 263.09 2339.36

manageiq 254.98 140.68 225.29

libcloud 781.10 109.80 732.14

mistio 1363.78 270.84 1339.77

list

cloudcheckr 993.05 126.11 953.57

manageiq 200.26 48.64 187.33

libcloud 338.55 38.84 328.69

mistio 20.77 10.16 17.31

sync
cloudcheckr 4.25e+05 6.15e+04 4.21e+05

manageiq 6.94e+05 2.06e+06 2.75e+04

delete

cloudcheckr 1063.39 192.29 1000.20

manageiq 7482.43 3131.54 7014.02

libcloud 0.01 0.01 0.01

mistio 103.77 41.60 88.88

In the results of provider management operations, shown in

the same table, Libcloud is again the fastest system under test.

Among the graphical interface platforms, good results are also

shown by the MistIO, as unlike ManageIQ and CloudcheckR

there is no need for synchronisation time. At the same time,

for the creation of the provider the fastest results are delivered

by the ManageIQ platform, the measurement of which can be

studied in Figure 2.

Next, Tables II and III show the characteristics of the

CPU time and memory allocation for the same experiments.

From both results, assuming proper analysis which researchers

using CMP 2 would perform, the conclusion would be that in

Docker-based platforms the results are not very stable.

The instability of Docker-based CMPs can be seen in the

deviations in Figure 3. The observation can be explained by

the fact that the systems are complex and have to be loaded

(or load parts by themselves) during the invocation, while

the operations that are carried out afterwards are simple and

not resource-intensive. This latter aspect can be seen in detail

from Libcloud on the zoom-in Figure 4, where the platform

itself is not resource-intensive. CMP 2 includes such statistical

libcloud mistio cloudcheckrmanageiq

50
0

10
00

15
00

20
00

25
00

30
00

La
te

nc
y,

 m
s

aws:provider:create_time

Fig. 2. Time to create provider object in CMP

TABLE II
PROVIDER OBJECT CREATION CPU TIME FOR LIBCLOUD

src action platform
metrics

cpu time (s)
mu sigma median

aw
s-

p
ro

v
id

er

create
manageiq 4.24e+08 3.67e+08 2.70e+08

libcloud 0.03 0.01 0.03

mistio 1.12e+08 1.74e+08 5.00e+07

list
manageiq 5.88e+08 3.60e+08 4.40e+08

libcloud 0.01 0.01 0.01

mistio 9.34e+07 1.79e+08 3.00e+07

sync manageiq 6.58e+11 1.93e+12 3.37e+10

delete
manageiq 7.62e+09 5.42e+09 6.36e+09

libcloud 0.00 0.00 0.00

mistio 9.30e+07 1.52e+08 4.00e+07

TABLE III
MEMORY CRITERIA EVALUATION

src action platform
metrics

memory use (KB)
mu sigma median

aw
s-

p
ro

v
id

er

create
manageiq -1.40e+07 7.38e+07 7.37e+04

libcloud 2.73e+05 4.31e+05 0.00

mistio 4.04e+05 5.46e+06 0.00

list
manageiq 2.82e+06 1.56e+07 1.68e+05

libcloud 1.11e+04 4.64e+04 0.00

mistio 3.08e+04 6.05e+06 0.00

sync manageiq 2.00e+08 9.66e+07 1.75e+08

delete
manageiq -1.63e+08 7.67e+07 -1.76e+08

libcloud 0.00 0.00 0.00

mistio -1.47e+05 6.56e+06 0.00

features in its results which reduces the risk that researchers

publish results based on single or few rounds of experiments.

libcloud mistio manageiq

0.
0

0.
5

1.
0

1.
5

2.
0

CP
U

tim
e,

 m
s

1e9 aws:provider:create_cpu

Fig. 3. Provider object creation CPU time

libcloud_aws

0.
02

0.
03

0.
04

0.
05

0.
06

CP
U

tim
e,

 m
s

= 0.03
median = 0.03

= 0.01

aws:provider:create_cpu

Fig. 4. Provider object creation CPU time in greater detail

C. Comparative Research Enablement

We argue that CMP 2 enables not only recomputation of

results from single published works on multi-cloud manage-

ment, but also eases comparisons between multiple such works

assuming the authors publish sufficient details for independent

reproducibility. To demonstrate the claim, we refer back to the

related work on multi-cloud API performance evaluation [10].

Their work shows the performance of Jclouds, Libcloud and

provider-specific libraries on storing files using AWS S3 and

Azure, and in particular the Libcloud/Boto(both Python)/S3

combination in the 12th figure. We reproduce (with permis-

sion) their figure in our paper as Fig. 5 where ’multi-cloud’

refers to Libcloud and ’platform-specific’ refers to Boto.

Their experiment measures the response time of download

and upload invocations of differently-sized files and indicates

a clear disadvantage of the multi-cloud CMP layer on the

download side.

Fig. 5. Original 12th figure from [10] on cloud storage performance with
Libcloud

Fig. 6. Comparable reproduction of figures from [10] on cloud storage
performance with Libcloud and Boto

Based on the raw data output by CMP 2, a custom plotting

procedure to achieve comparable boxplots was implemented

with little effort. The customisation of our testbed took 5 hours

of work including a comparable configuration of file sizes and

credentials. Fig. 6 shows the graph output by our testbed.

It should be noted that CMP 2 always produces single

graphs, hence our figure combines two automatically produced

graphs in a matching order. While details differ, all important

structural metrics are present in the graph. According to the

statistics conveyed by the plot, it is evident that absolute

response times cannot be compared, primarily due to different

network configurations between research systems and cloud

providers. Yet in relative terms, our measurement reveals a

much higher spread in proportion to the file size.

V. CONCLUSION

With the popularity of hybrid cloud systems and multi-cloud

applications, the number of platforms aiming to centralise

their management and billing is continuously growing. The

cloud management platforms (CMPs) differ depending on the

software, and each of them is suitable for specific purposes.

A lot of academic works that compare a separate platform

functionality are written and published, which indicates the

relevance of this topic. In this paper, we identified weak-

nesses in these publications and examined the possibility of

centralised, standardised and recomputable testing of CMPs

which are built on web platforms, local Docker platforms and

libraries.

As part of this work, a test environment and an architecture

for multi-platform testing are contributed. The architecture

systematises comparisons and provides the ability to run all

tests with just one starting file which in the future can be

used by other researchers to validate the experiments. The

architecture is modular and very flexible which provides the

possibility of its low-effort expansion. The raw results are

stored in text form, from which in the future through the same

testbed not only single and combined graphs as well as tables

in LATEXformat, but also other representations can be derived.

The contribution of the work is hence not to compare

the platforms in specific dimensions but to create a testbed

environment to facilitate such comparison and evaluation

studies. Merely as a desirable side effect of our work, by

choosing Libcloud and Boto (both libraries), MistIO (docker

composed containers), ManageIQ (single image container) and

CloudcheckR (website with open API), we show exemplary

results which are valid for the specified software and service

versions. The results are entirely consistent since libraries are

the easiest way to manage platforms and they do not have

an overhead, and they yield the best performance results. In

the evaluation of provider management between two locally

running platforms, MistIO shows itself better since ManageIQ

has a wider range of functionality leading to more significant

overhead.

All the data and findings are published as open source and

open data to keep the study reusable and repeatable. The

software can be found in an online code repository1 while

the reference data is available from a data repository2.

1CMP software: https://github.com/serviceprototypinglab/cmp-testbed
2Evaluation data: https://zenodo.org/record/1311795

REFERENCES

[1] Paul Alpar and Ariana Polyviou. Management of multi-cloud computing.
In Global Sourcing of Digital Services: Micro and Macro Perspectives -

11th Global Sourcing Workshop 2017, La Thuile, Italy, February 22-25,

2017, Revised Selected Papers, pages 124–137, 2017.
[2] Kate Keahey, Pierre Riteau, and Nicholas P. Timkovich. Lambdalink:

an operation management platform for multi-cloud environments. In
Proceedings of the 10th International Conference on Utility and Cloud

Computing, UCC 2017, Austin, TX, USA, December 5-8, 2017, pages
39–46, 2017.

[3] José Luis Lucas-Simarro, Rafael Moreno-Vozmediano, Rubén S. Mon-
tero, and Ignacio Martı́n Llorente. Cost optimization of virtual infras-
tructures in dynamic multi-cloud scenarios. Concurrency and Compu-

tation: Practice and Experience, 27(9):2260–2277, 2015.
[4] Rima Grati, Khouloud Boukadi, and Hanêne Ben-Abdallah. Saas cloud

provider management framework. In ICE-B 2015 - Proceedings of the

12th International Conference on e-Business, Colmar, Alsace, France,

20-22 July, 2015., pages 221–228, 2015.
[5] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym

Lushpenko, and Arnor Solberg. Cloudmf: Model-driven management of
multi-cloud applications. ACM Trans. Internet Techn., 18(2):16:1–16:24,
2018.

[6] Dennis Wehrle, Thomas Liebetraut, Isgandar Valizada, and Klaus
Rechert. Emulation-as-a-service - workflows and infrastructure to
support recomputable science. In Proceedings of the 7th IEEE/ACM

International Conference on Utility and Cloud Computing, UCC 2014,

London, United Kingdom, December 8-11, 2014, pages 962–967, 2014.
[7] University of Trier. DBLP. https://dblp.uni-trier.de/, 1993. Online;

accessed 2018-06-29.
[8] Marcelo Alexandre da Cruz Ismael, César Alberto da Silva,

Gabriel Costa Silva, and Reginaldo Ré. An empirical study for evaluat-
ing the performance of jclouds. In 7th IEEE International Conference on

Cloud Computing Technology and Science, CloudCom 2015, Vancouver,

BC, Canada, November 30 - December 3, 2015, pages 115–122. IEEE
Computer Society, 2015.

[9] Apache Software Foundation. Apache jclouds.
https://jclouds.apache.org/, 2013. Online; accessed 2018-06-06.

[10] Reginaldo Ré, Rômulo Manciola Meloca, Douglas Nassif Roma Junior,
Marcelo Alexandre da Cruz Ismael, and Gabriel Costa Silva. An
empirical study for evaluating the performance of multi-cloud apis.
Future Generation Comp. Syst., 79:726–738, 2018.

[11] Apache Software Foundation. Apache Libcloud.
https://libcloud.apache.org/, 2013. Online; accessed 2018-07-06.

[12] Steven Thomas Graham and Xiaodong Liu. Critical evaluation on
jclouds and cloudify abstract apis against ec2, azure and hp-cloud. In
IEEE 38th Annual Computer Software and Applications Conference,

COMPSAC Workshops 2014, Vasteras, Sweden, July 21-25, 2014, pages
510–515. IEEE Computer Society, 2014.

[13] Antonio Brogi, José Carrasco, Javier Cubo, Francesco D’Andria, Elisa-
betta Di Nitto, Michele Guerriero, Diego Pérez, Ernesto Pimentel, and
Jacopo Soldani. Seaclouds: An open reference architecture for multi-
cloud governance. In Software Architecture - 10th European Conference,

ECSA 2016, Copenhagen, Denmark, November 28 - December 2, 2016,

Proceedings, pages 334–338, 2016.
[14] Raphael Bolze, Franck Cappello, Eddy Caron, Michel J. Daydé, Frédéric

Desprez, Emmanuel Jeannot, Yvon Jégou, Stéphane Lanteri, Julien
Leduc, Nouredine Melab, Guillaume Mornet, Raymond Namyst, Pascale
Primet, Benjamin Quétier, Olivier Richard, El-Ghazali Talbi, and Iréa
Touche. Grid’5000: A large scale and highly reconfigurable experimental
grid testbed. IJHPCA, 20(4):481–494, 2006.

[15] CloudCheckr. CloudcheckR. https://cloudcheckr.com/, 2011. Online;
accessed 2018-07-06.

[16] Mistio. mist.io. https://mist.io, 2015. Online; accessed 2018-07-06.
[17] RedHat. ManageIQ. http://manageiq.org/, 2012. Online; accessed 2018-

07-06.
[18] Jürgen Cito and Harald C. Gall. Using docker containers to improve

reproducibility in software engineering research. In Proceedings of the

38th International Conference on Software Engineering, ICSE 2016,

Austin, TX, USA, May 14-22, 2016 - Companion Volume, pages 906–
907, 2016.

