Functions-as-a-Service &
Workflows

Building a server-less application using FaaS
Workflows

SPEAKER: DIEGO MARTIN

INDEX OF CONTENTS

» Stage O
Functions-as-a-Services, a brief introduction
FaaS Workflows
Working with the technology: providers

- Stage 1
Building a ToDo-App from scratch

FUNCTIONS-AS-A-
SERVICE

A BRIEF INTRO

-

Functions-as-a-Services, a brief introduction

Funtion-as-a-Service (aka FaaS) is a specialized kind of
Platform-as-a-Service (aka PaaS) Iin witch everything,
asides the functional code itself, Iis abstracted and
handled by the provider

A © B

It can be modeled like the image above in which both sides (the
iInput and the output of the function) can be anything the provider
allows you: databases, HTTP triggers, events, files, devices, etc

FaaS WORKFLOW/

FaaS Workflows

FaaS Workflows arise from the need to connect two (or
more) functions in a logic and function-agnostic way

© ©

This connections can be as simple as a sequence or
chain, or evolve Into a more complex relation of

functions that can result in a complete state machine
(which could be considered as States-as-a-Service)

WORKING WITH THE

TECHNOLOGY /
PROVIDERS /

Working with the technology

Until today, there’'s a few providers offering this
technology:

- AWS Step Functions

- IBM Composer

- Platform9 Fission Workflows
- Microsoft Azure Logic Apps
- Oracle Fn Project (Fn Flow)

Working with the technology

1
}

AWS Setp Functions

"Comment": "A simple minimal example of the States language",
"StartAt": "Hello World",
"States": {

"Hello World": {

IIType“ : IITaSk“'
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:HellowWorld"
"End": true

IBM Composer

composer . try(
composer . sequence(
'myWatsonTranslator/languagelId’,
composer . ifT(
p == p.language '== 'en',
composer . sequence(

r

p == ({translateFrom: p.language,

'myWatsonTranslator/translator’
)
composer.sequence(
p == ({text: p.payload}),
'enZshakespeare’

e

err =» ({payload: 'Sorry we cannot translate your text'})

translateTo:

Fission Workflows

apiVersion: 1
output: WhaleWithFortune
tasks:
GenerateFortune:
run: Fortune
inputs: "{%.Invocation.Inputs.default}"

WhaleWithFortune:
run: whalesay
inputs: "{%.Tasks.GenerateFortune.OQutput}"
requires:
- GenerateFortune

'en', payload: p.payload}),

Working with the technology

AWS Step Functions

Graph Code ~ Execution Details % myApp w0l

IBM Composer

YYou are in edit mode, viewing the currently deployed version

W Success MFailed © Needsretry MIn progress Info Input Output
1 // try typing "composer." to begin your composition
r 2 compeser.sequence(args => ({msg: “hello ${args.name}! }) B
Start Execution Status)I

Started
Nov 20, 2016 9:58:28 AM
Closed
Mov 20, 2016 9:58:32 AM
CreateQOrdera,
v Step Details

{

DatabaseEmor UnservedRegion
\ / ID Type Timestamp
NeOrderPossible p 1 ExecutionStarted MNov 20, 2016 9:58:28 AM

-~ / » 2 TaskStateEntered Nov 20, 2016 9:58:28 AM

» 3 LambdaFunctionScheduled MNov 20, 2016 9:58:28 AM

AZURE Logic Apps

When a feed item is published

E Condition

And v

J

| Feedsu.. x

contains ~ || Microsoft

Add dynamic content

If true If false

E Office 365 Outlook - Send an email

f Add an action * = More f Add an action ** More

The Hands-on! /

The composition

7 Simple functions

2 kind of connectors:

- sequence
- if-then-else

compose
"FWTT
"FWTT
)

owTodos'

&& (params.action.constructor

|| params.action
add,

Object),

getTodos

;
I

¥

Y

!

h 4
addTodo delTodo wipTodo doneTodo
| % | | |
updateTodos
showTodos

The Hands-on! /

THANKS!

~ /

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

