
Zürcher Fachhochschule

Transactional Migration of 

Inhoiogeneous Coiposite Cloud 

Applications

Josef Spillner, Manuel Ramírez López

Service Prototyping Lab (blog.zhaw.ch/splab)

Sep 12, 2018 | 4th CloudWays @ 7th ESOCC



2

Our research on cloud-native apps

“Migration“

Design/Code Location

“Co-Transformation to 
Cloud-Native Applications: 
Development Experiences 
and Experimental 
Evaluation“
(CLOSER 2018)

“A mixed-method empirical 
study of Function-as-a-
Service software 
development in industrial 
practice“ (PeerJ Preprints 
6:e27005v1)

“Towards Quantifiable 
Boundaries for Elastic Horizontal 
Scaling of Microservices“
(UCC 2017)

& This paper:

“Transactional Migration of 
Inhomogeneous Composite 
Cloud Applications“
(CloudWays/ESOCC 2018)

→ Maturity levels

→ Technologies

→ Portability

Cloud-Native Design
and Architecture

UCC 2015, ESOCC 2017,
FGCS 2017, ...

Cloud-Native Software
Engineering/TechDebt

... soon!

→ well-understood → needs research



3

Migration semantics

Main differentiation: copy vs. move at runtime
● applicable to: code (images/image refs), composition/configuration, data
● transactional semantics required, too *

* some resemblance of “ship of Theseus“, Heraclitus‘ puzzle

A B

app

app app

copy

delete

app
move

app

image

image

imageim ref

compo

conf volume

dbdata ref

private

private/
public



4

Migration use cases (industry-defined)

A

B

A

B

A=B

(1) inter-region/zone (2) across providers (3) in-situ reconfiguration

● new storage cluster
● new storage class
● composition updates

(with immutable
deployments)



5

Migration technologies

Virtual machines
● unidirectional (asymmetric; vendor lock-in by [economic] design)

● AWS Snowball, Server Migration Service (vSphere, Hyper-V) & similar
● bidirectional (symmetric)

● vMotion, KVM migrate/savevm/loadvm, XenMotion

Containers
● Docker image save/load, rsync...
● Docker engine 1.7 live migration (demo Jun‘15, not generally available)
● Docker with CRI-O (checkpointing - no longer active since Dec‘15)
● Flocker (portable containers - no longer active since Dec‘16)
● Kubernetes: Helm charts, recent, no data; otherwise focus on pods
● Virtuozzo - works, but technology differences...
● Jelastic - commercial solution

→ needs researchagain:



6

Migration categories and dimensions



7

Design considerations

Migration workflow

Heterogeneous (idealistic) view



8

Design considerations

Yet... the unsurmountable reality fueled by lots of VC investment...

Observations:

- consolidation does occur, but:

- differences remain (configuration, extensions, distributions)



9

Design considerations

Inhomogeneous (realistic) view

Iterative experience buildup by:
● multiple alternative (competing) implementations

Representation of applications eventually as:
● auto-generated Helm charts based on Kubernetes/OpenShift 

deployments (except for Docker Compose)
● “fat charts“ concept for fully self-contained stateful snapshots

Transaction guarantees
● ability to cancel in-flight + rollback, along with prediction
● (pre-copy/post-copy differential state transfer sequence)



10

Competing implementations

Envisioned and realised prototypes

Takeaway:
● fully developed os2os/volume2volume with testing, CI/CD integration, ...
● continuing evolvement of openshifter as more promising design

● deployable as scalable service
● interwoven service and state handling
● integration of constraints via descriptor rewriting



11

Evaluation

Disclaimer: only first couple of experiments
● focus on OpenShift instances (clusters) within data centre



12

Conclusions

Achievements
● study of feasibility of portable, take-where-you-go cloud applications
● initial concept for stateful application migration (in the ‘transfer‘ sense)

Limitations
● concept not fully implemented yet, lack of autodiscovery and failure 

provocation

Applied research in industry context
● requirements changing with customer requests + technological evolution
● prototypes available as open source via our research lab repository

● http://github.com/serviceprototypinglab/
● automated testbed setup scheduled to arrive

● allows for better reproducible research
● long-term perspective (i.e. support by Kubernetes ecosystem vendors)

 not yet clear


