zh School of
Engineering
InIT Institute of Applied

aw

Transactional Migration of
Inhomogeneous Composite Cloud
Applications

Josef Spillner, Manuel Ramirez Lopez
Service Prototyping Lab (blog.zhaw.ch/splab)

Sep 12, 2018 | 4th CloudWays @ 7th ESOCC

Zurcher Fachhochschule

Our research on cloud-native apps

Cloud-Native
Applicati

ICCLAB &
SPLAE

Cloud-Native Design
and Architecture

UCC 2015, ESOCC 2017,
FGCS 2017, ...

Cloud-Native Software
Engineering/TechDebt

... soon!

“Migration®

/\

Design/Code

— Maturity levels
— Technologies

“Co-Transformation to
Cloud-Native Applications:
Development Experiences
and Experimental
Evaluation®

(CLOSER 2018)

“A mixed-method empirical
study of Function-as-a-
Service software
development in industrial
practice” (PeerJ Preprints
6:€27005v1)

— well-understood

Location

— Portability

“Towards Quantifiable

Boundaries for Elastic Horizontal

Scaling of Microservices*
(UCC 2017)

& This paper:

“Transactional Migration of
Inhomogeneous Composite
Cloud Applications*

(CloudWays/ESOCC 2018)

— needs research

Migration semantics

Main differentiation: copy vs. move at runtime
* applicable to: code (images/image refs), composition/configuration, data

* transactional semantics required, too *

asen PN
C A \) g\ \)
LYY 2D
r private
a:) - dataref @
- delete \
@ private/
Hj\????“:::::*«~~x\n\move b

* some resemblance of “ship of Theseus®, Heraclitus' puzzle

Migration use cases (industry-defined)

(1) inter-region/zone (2) across providers (3) in-situ reconfiguration

« -
@

* new storage cluster
/ * new storage class
e composition updates

1. Scale down Deployment or StatefulSet (With immutable
® Do this only when needed, probably via a configuration deployments)
e |t has to be done for ReadWriteOnce volumes
2. Mount source and destination PVs (via PVCs)
3. Rsync data from source to destination
4. Verify that all data has been copied successfully
5. Patch Deployment or StatefulSet to use the new PV
6. Scale up Deployment or StatefulSet again
7. Stop Pod

Migration technologies

Virtual machines
* unidirectional (asymmetric; vendor lock-in by [economic] design)

* AWS Snowball, Server Migration Service (vSphere, Hyper-V) & similar
* bidirectional (symmetric)

* vMotion, KVM migrate/savevm/loadvm, XenMotion

Containers

* Docker image save/load, rsync...

Docker engine 1.7 live migration (demo Jun‘l5, not generally available)
Docker with CRI-O (checkpointing - no longer active since Dec‘15)
Flocker (portable containers - no longer active since Dec'16)
Kubernetes: Helm charts, recent, no data; otherwise focus on pods

* Virtuozzo - works, but technology differences...

 Jelastic - commercial solution

again: — needs research

Migration categories and dimensions

live

£
£

heferogeneous
our general
outline
infPbmogeneous -
our system
prototype

related
ho:Eogeneous [I:I work

LiLI LS
same-provider cross-provider

Design considerations

Migration workflow Step 1:

Download

files

Blueprints of

Orchestration.tool A orchestration tool A

Step 2:
Step 3: VConversion

Blueprints of

Orchestration tool B + T —

Heterogeneous (idealistic) view

Docker

Docker Compase

e Kubernetes

1

Generic Migration

/templates/
/k8s/
/marathon
/vamp
/compose
/other

/volumes

Design considerations

Yet... the unsurmountable reality fueled by lots of VC investment...

Openshift Online

1

APPUIO Platform]

4

[Gncrgle Cont.

Eng]

Heroku

)

FBM C!uudfaluemix] [Docker Cloud]

[Azu re Containers I MAWS ECS }
|

Openshift Origin | | — '
I Vamp m l Tasks J» ----- e -{Cnntainar Groups]
Y
DC/OsS Rancher
i |
L AR J ¥ ¥
Marathon -+ Kubernetes r Swarm « Compose a
[1 | |
¥ ¥ L 4 |
«Rkt» <<Docker»|—u—| «0CID» «LXC»
runc
. Y - Y Y 4
AppC Farmat Docker Format] [OCI Format directory

Commercial offering

Observations:
- consolidation does occur, but:

- differences remain (configuration, extensions, distributions)

Image format . Blueprint format

Open source software |

Design considerations

Inhomogeneous (realistic) view

upgrade

Openshift OpenShift Paths:
o, MRS G e T >» : - upgrade
extensions) extensions)
constrain e.g. generate DeploymentConfig from Deployment
Kubernetes —3f-====--- » Kubernetes - downgrade
e.g. remove ImageStream
downgrade - constrain
Docker transform (- > Docker e.g. change replicas and reduce # of pods
Compose Compose - transform
source platform target platform e.g. turning compose file into deployment descriptors

Iterative experience buildup by:
* multiple alternative (competing) implementations

Representation of applications eventually as:

* auto-generated Helm charts based on Kubernetes/OpenShift
deployments (except for Docker Compose)

* “fat charts” concept for fully self-contained stateful snapshots

Transaction guarantees
* ability to cancel in-flight + rollback, along with prediction
* (pre-copy/post-copy differential state transfer sequence)

Competing implementations

Envisioned and realised prototypes

r—

Data
migration

(Fictive Generic
Heterogeneous
l Migration Tool

Blueprint

» Kompose

—» "Cubernetes"

conversion

Homogeneous w migration

S ——
3

!

Y

~ "8

Kubernetes:
"k8s2k8s"

Docker Swarm:

"swarm2swarm"
\ J

y

A

oc

kubectl

docker

others CLI

Takeaway:

* fully developed os2os/volume2volume with testing, CI/CD integration, ...
* continuing evolvement of openshifter as more promising design
s5m * deployable as scalable service

£« interwoven service and state handling

* integration of constraints via descriptor rewriting

Evaluation

Disclaimer: only first couple of experiments
* focus on OpenShift instances (clusters) within data centre

OpenShift source cluster

OpenShift target cluster
My project/namespace

‘ My application '
w volume By
R ——
‘{‘\V openshifterclient
Migration space \ I F'__.—-"

X X X .-
‘ /templates os2os volume2volume openshifter ftemplates
fvolumes + + + + /volumes
oc rsync oc rsync Jcharts
25 25 25
20 20 20
5 wis wis
Qo ©
0 E 10 E 10
NI I] 5|||||||||| 5
0% 2 4 6 8 0% 2 4 6 8 88 2 4 6 8
run ref.export.json # run ref.up.json # run ref.down.json

11

Conclusions

Achievements
* study of feasibility of portable, take-where-you-go cloud applications
* initial concept for stateful application migration (in the ‘transfer sense)

Limitations
* concept not fully implemented yet, lack of autodiscovery and failure
provocation

Applied research in industry context
* requirements changing with customer requests + technological evolution
* prototypes available as open source via our research lab repository

* http://github.com/serviceprototypinglab/
* automated testbed setup scheduled to arrive

* allows for better reproducible research
* long-term perspective (i.e. support by Kubernetes ecosystem vendors)
WEs[E not yet clear

12

