
Co-Transformation to Cloud-Native
Applications

- Development Experiences and
Experimental Evaluation

Josef Spillner, Yessica Bogado, Walter Benítez,
Fabio López Pires

March 19, 2018 | CLOSER | Madeira, Portugal

Zurich University of
Applied Sciences (CH)

Itaipu Technology Park (PY)

2
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Cloud Applications

[roisinoyrne.co.uk]

3
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Cloud-Native Applications

[Pivotal]

[UKCloud]

4
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Cloud-Native Applications
Cloud-Native Computing (CNCF definition 2017):

A new computing paradigm optimised for modern distributed
systems environments capable of [ultra] scaling to self-healing
multi-tenant nodes.

Properties: containerised, dyna-managed, µ-services-oriented

General views on CNA (de-facto definitions):

Toffetti et. al. → resilient
→ elastic

ODCA 2015 → virtualised
→ loosely coupled (composite, discovery)
→ abstracted (stateless, resilient)
→ adaptive (0DT live-migration)

Derived domain-specific views... e.g. for DMS, CRM, ERP, ...

5
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Application Domain: Music Royalties
MRO: Music Royalty Organisations

MRM: Music Royalty Management
● collection of information about publicly performed works, e.g.
music - apart from excempt from royalties

● aggregation and forwarding to MROs

HENDU MRM
● mobile application to detect music played via fingerprint
database

● web application for management and bills
● direct access to radio stations

6
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Application Starting Point
Cloud enablement through basic microservices architecture,
containers & composite deployment of HENDU

7
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Co-Transformation Methodology
Gradual alignment with highest maturity level (cloud-native)

From cloud-enabled to cloud-aware:
● discovery & rebinding mechanisms for cloud-provided services
● static use of cloud-provided management facilities (e.g. scaling,
healing, migration, ...)

From cloud-aware to cloud-native:
● separation stateful/stateless microservices + self-management
● policies for adaptive enactment of mechanisms

8
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Self-Management in Detail
Static vs. dynamic (adaptive) choice of management mechanism

9
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Co-Transformation Steps
Methodology (generic) → Concept (HENDU) → Implementation

From cloud-enabled to cloud-aware:
● flexibility → CA

1
 HENDU switch own/platform DBaaS → YAML

configuration with endpoints and credentials
● platform facilities → CA

2
 auto-scaling rules + initial scaling →

Kubernetes/Heapster rules based on CPU usage

From cloud-aware to cloud-native:
● microservices → CN

1
 container images re-engineering → Alpine

base images, RESTful endpoints
● self-healing → CN

2
 health checks → Kubernetes probes

● autoscaling → CN
3
 domain-specific autoscaling → future work,

app-specific metrics
● adaptivity → CN

4
 application-controlled services and policies →

future work, service broker notifications

10
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Cloud-Native Application Architecture
HENDU after successful co-transformation

11
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Experimental Evaluation
Platform resilience: Docker fault injection + self-healing extension

Experiments: (a) kill containerd-shim, (b) also containerd, (c)
«Revive» 5s window when killing containerd-shim, (d) revive 2s

(a) (o)

(c) (d)

(x: #termination
 attempts,
y: percentage of
 processes)

12
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Experimental Evaluation
Application resilience with self-healing: «Revive» container

Experiments: (a) 3.55% inconsistent states with SIGTERM/KILL to
Docker, (b) exponential backoff with health checks without/with
greedy override in «Revive» and 0/1s intervals between signals

Conclusion: immaturity of platforms, also reflects on K8s etc.

(a)
(o)

(x: #termination attempts, y: time in ds)(x: #termination attempts, y: inconsistencies)

13
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Experimental Evaluation
Elastic scaling through 2-cluster Kubernetes rules

Workload simulation: JMeter, 100 consecutive HTTP POSTs, 10min

Results:
→ with CPU auto-scaling: RT=120ms RS/m=2833
→ without CPU auto-scaling: RT=2923ms RS/m=1213

Conclusion: good non-linear scalability of platforms

14
Co-Transformation to Cloud-Native Applications
- Development Experiences and Experimental Evaluation

Conclusions
Already achieved
● First systematic cloud-native transformation approach for
software developers

● Number of tools such as docker-killer (published through OSF)

Still to be worked on
● Complete self-management including cross-provider migration
● More fine-grained workflow with serial and parallel steps
● Automation tools for future co-transformations
● Application of methodology in other domains

Follow our work
● Cloud-Native Applications
research initiative @ SPLab
(since 2014)

