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Foreword

● IaaS cloud research impact
– Industry (e.g., J. Wilkes, A. Cockcroft)

– Academia

● My strategic direction: focus on application 
providers rather than infrastructure providers

● Cloud-native applications: new development 
paradigms, best practices, open challenges
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Problem: cloud-native applications

● Cloud-native apps/services: much more than 
deploying VMs

● Three sources of uncertainty:

– Varying demand/load
– Unreliable infrastructure
– Unreliable/varying 3rd party services

● Scale of systems and need of immediate 
reaction require service management 
automation
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Management functionalities

● Monitoring (e.g., ELK stack) → TF9
● Health-management (e.g., fleet, kubernetes)
● Auto-scaling → QoS model-based → TF2+8
● Dynamic service (re)composition (e.g., ribbon) 

→ TF3
● Dynamic placement → Optimization → TF4
● Dynamic traffic routing (zuul, dyn dns)
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Current state of the art

● IaaS providers offer:
– Generic monitoring (infra + RTs)

– Generic auto-scaling (rule-based)

– Drawbacks: vendor lock-in, generic one-size-fits-all, 
costly VAS $$$

● 3rd party offerings (Rightscale, Scalr, NewRelics)
– Component-specific monitoring collection

– Drawbacks: non-compliant with data privacy, not 
application specific, costly $$$ (svc + data transfer)
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Proj Goals

● Keep management functionalities within the application

– Avoid vendor lock-in (change or use more than 1 provider)
– Save $$$
– Make management functionalities resilient and scalable 

with the service (eat your own dog food)
● Release an OSS framework for self-managing cloud 

applications

– Allow researchers to focus on their specific area of 
expertise

– Provide common use cases deployable anywhere
– Foster scientific collaboration / community work
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Main ideas

● Resilient distributed management based on 
distributed configuration
– Consensus algorithm for leader election: leader is 

responsible of mgmt functionality

– “Stateless” mgmt can be restarted upon failure of any 
component → use shared state

● Apply same idea hierarchically and use service 
orchestration concepts to manage compositions 
and life-cycle



etcd

• Distributed key value store
• Designed for: shared configuration & service 

discovery
• Implements Raft consensus algorithm
• Handles machine failures, master election etc.
• Actions: read, write, listen
• Data structure

• /folder
• /folder/key

• REST-API
• easy to use client: etcdctl

Slide credit: Martin Blöchlinger
“Migrating an Application into the 
Cloud with Docker and CoreOS”



etcd - example

read/write a value
> etcdctl get /folder/key

> etcdctl set /folder/key

read/create directory
> etcdctl mkdir /folder

> etcdctl ls /folder

listen to changes
> etcdctl watch /folder/key

> etcdctl exec-watch /folder/key -- /bin/bash -c “touch /tmp/test”

Slide credit: Martin Blöchlinger
“Migrating an Application into the 
Cloud with Docker and CoreOS”



etcd - service discovery

Slide credit: Martin Blöchlinger
“Migrating an Application into the 
Cloud with Docker and CoreOS”
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lifecycle
Orch

Orch

LB

LB

etcd

etcd

AS

AS

CA

CA

DB

DB

deploy

set LB/id/endpoint=x

watch AS/*

deploy

set AS/id/endpoint=y

AS/* changed

reconfigure()

deploy

set CA/id/endpoint=z

deploy

set DB/id/endpoint=t

state='active'

save monitoring

check if active

check if leader

start auto-scale

start health-mgmt

state='shutdown'
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Service Orchestration (the MCN way)
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Atomic (micro)service graphs
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Service composition graphs
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hierarchical etcd clusters
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Take home message

● Proj goal:
– Vendor independent self-managing services

– Managing functionalities deployed within the service (monitoring, 
health-mgmt, autoscaling, svc recomposition, placement, routing)

– Strive for technology independent OSS fwk for self-managing 
svcs (etcd + REST + actuator wrappers)

● Looking for:
– Experts in any of the mgmt functs willing to contribute their 

requirements / design inputs, approaches as fwk plugins, use 
cases

● Offer:
– The base fwk, extensive cloud experience, good laughs :)



Zürcher Fachhochschule

That's all folks

Any questions?

If interested just drop me a line at: toff@zhaw.ch

● ICCLab: http://blog.zhaw.ch/icclab

● Cloud-Native Applications Initiative: 
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/
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Hic sunt leones

● Backup slides from here...

mailto:toff@zhaw.ch
http://blog.zhaw.ch/icclab
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/
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