
Zürcher Fachhochschule

MITOSIS pitch

MITOSIS: distributed autonoMIc managemenT Of 
ServIce compoSitions

Giovanni Toffetti



2

Foreword

● IaaS cloud research impact
– Industry (e.g., J. Wilkes, A. Cockcroft)

– Academia

● My strategic direction: focus on application 
providers rather than infrastructure providers

● Cloud-native applications: new development 
paradigms, best practices, open challenges



3

Problem: cloud-native applications

● Cloud-native apps/services: much more than 
deploying VMs

● Three sources of uncertainty:

– Varying demand/load
– Unreliable infrastructure
– Unreliable/varying 3rd party services

● Scale of systems and need of immediate 
reaction require service management 
automation



4

Management functionalities

● Monitoring (e.g., ELK stack) → TF9
● Health-management (e.g., fleet, kubernetes)
● Auto-scaling → QoS model-based → TF2+8
● Dynamic service (re)composition (e.g., ribbon) 

→ TF3
● Dynamic placement → Optimization → TF4
● Dynamic traffic routing (zuul, dyn dns)



5

Current state of the art

● IaaS providers offer:
– Generic monitoring (infra + RTs)

– Generic auto-scaling (rule-based)

– Drawbacks: vendor lock-in, generic one-size-fits-all, 
costly VAS $$$

● 3rd party offerings (Rightscale, Scalr, NewRelics)
– Component-specific monitoring collection

– Drawbacks: non-compliant with data privacy, not 
application specific, costly $$$ (svc + data transfer)



6

Proj Goals

● Keep management functionalities within the application

– Avoid vendor lock-in (change or use more than 1 provider)
– Save $$$
– Make management functionalities resilient and scalable 

with the service (eat your own dog food)
● Release an OSS framework for self-managing cloud 

applications

– Allow researchers to focus on their specific area of 
expertise

– Provide common use cases deployable anywhere
– Foster scientific collaboration / community work



7

Main ideas

● Resilient distributed management based on 
distributed configuration
– Consensus algorithm for leader election: leader is 

responsible of mgmt functionality

– “Stateless” mgmt can be restarted upon failure of any 
component → use shared state

● Apply same idea hierarchically and use service 
orchestration concepts to manage compositions 
and life-cycle



etcd

• Distributed key value store
• Designed for: shared configuration & service 

discovery
• Implements Raft consensus algorithm
• Handles machine failures, master election etc.
• Actions: read, write, listen
• Data structure

• /folder
• /folder/key

• REST-API
• easy to use client: etcdctl

Slide credit: Martin Blöchlinger
“Migrating an Application into the 
Cloud with Docker and CoreOS”



etcd - example

read/write a value
> etcdctl get /folder/key

> etcdctl set /folder/key

read/create directory
> etcdctl mkdir /folder

> etcdctl ls /folder

listen to changes
> etcdctl watch /folder/key

> etcdctl exec-watch /folder/key -- /bin/bash -c “touch /tmp/test”

Slide credit: Martin Blöchlinger
“Migrating an Application into the 
Cloud with Docker and CoreOS”



etcd - service discovery

Slide credit: Martin Blöchlinger
“Migrating an Application into the 
Cloud with Docker and CoreOS”



12

lifecycle
Orch

Orch

LB

LB

etcd

etcd

AS

AS

CA

CA

DB

DB

deploy

set LB/id/endpoint=x

watch AS/*

deploy

set AS/id/endpoint=y

AS/* changed

reconfigure()

deploy

set CA/id/endpoint=z

deploy

set DB/id/endpoint=t

state='active'

save monitoring

check if active

check if leader

start auto-scale

start health-mgmt

state='shutdown'



13

Service Orchestration (the MCN way)



14

Atomic (micro)service graphs

LB

AS

CADB

Type Graph (TG)
1

1..20

1
N

2 1..4

1..51..10
1..10

21

1

LB

AS ASASASAS AS ASAS

CACA
DB

Instance Graph (IG)

1

DB



15

Service composition graphs

API 
Proxy

μS2
AAA

RCB μS3

μS1

Type Graph (TG)

μS3μS3

μS2
μS1

API 
Proxy

μS2
AAA

RCB μS3

μS1

Instance Graph (IG)



16

hierarchical etcd clusters

μS1

μS2

μSi
μSn

...

C1 C2 ...

Ci
...Ck

Leader

Leader

Local cluster

Composition cluster Self-managing 
microservice
(“cell”)

Self-managing
service composition
(“organism”)



17

Take home message

● Proj goal:
– Vendor independent self-managing services

– Managing functionalities deployed within the service (monitoring, 
health-mgmt, autoscaling, svc recomposition, placement, routing)

– Strive for technology independent OSS fwk for self-managing 
svcs (etcd + REST + actuator wrappers)

● Looking for:
– Experts in any of the mgmt functs willing to contribute their 

requirements / design inputs, approaches as fwk plugins, use 
cases

● Offer:
– The base fwk, extensive cloud experience, good laughs :)



Zürcher Fachhochschule

That's all folks

Any questions?

If interested just drop me a line at: toff@zhaw.ch

● ICCLab: http://blog.zhaw.ch/icclab

● Cloud-Native Applications Initiative: 
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/



19

Hic sunt leones

● Backup slides from here...

mailto:toff@zhaw.ch
http://blog.zhaw.ch/icclab
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/


20


	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	etcd
	etcd - example
	etcd - service discovery
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20

