
Making Openstack 
more Energy Efficient...

...a little story from your friends at ICCLab...



The challenge
• Energy continues to be a primary concern in very large clouds 

and data centres

• It will impact smaller deployments eventually...

• ...through policy/regulation or making IT manager responsible 
for energy budget...

• Cloud stacks need to be energy aware...

• ...to deliver energy efficient IT

• This is not a new idea...

• Eucalyptus, Open Nebula

• ...but has not been realized in Openstack as yet



So what did we do?

• Develop Openstack-based Energy 
Monitoring solution

• Initial work on developing control 
mechanism to increase energy efficiency...

• ...tied into some advanced, more robust 
live migration mechanisms...

• ...essentially focused on powering-down 
servers when possible



The (Arcus) Energy 
Monitoring Tool

• Openstack focused Energy Monitoring Tool

• Primarily designed to understand our own energy 
consumption

• Leverages Kwapi

• Energy Monitoring subsystem within Openstack ecosystem

• Supports data collection from disparate energy 
monitoring devices

• Stores in Ceilometer

• Collects information from libaem (IBM servers) and 
Supermicro IPMI tool (Supermicro servers)



Screenshot...

...and more to follow...



CPU utilization and 
Energy Consumption

...IBM x3550 M4, Dual Xeon E5-2640 processors...



Energy Aware Load 
Management

• Basic approach is to perform load consolidation

• 50-75% utilization is better operating point 
from energy perspective

• Avoid servers with small amounts of work

• Baseline energy consumption high when server 
powered up

• Power down servers when possible...

• ...and WakeOnLan to revive them...



Live Migration...a little 
detour...

• Standard VM live migration operates using so-called pre-copy 
approach

• Source remains active while memory copied to destination

• Has some issues with robustness...

• ...may not converge, depending on the memory activity of 
the VM

• Post-copy live migration offers alternative

• ...does not suffer from convergence problem

• Hybrid solution best, offering performance and robustness



Deployed hybrid live 
migration in Openstack
• Requires the use of 

• patched kernel

• with userfaultfd(), remap_anon_range()

• patched qemu

• with hybrid, postcopy supports 

• patched post-copy aware libvirt

• Quite stable, but not a straightforward deployment 
process



Performance of hybrid 
LM

Varying Memory Change Rate with AppMembenchTool: 10 MB/s, 100MB/s, 1000MB/s
Post-copy succeeds in every single scenario (downtime ~0.5s)

Pre-copy convergence very unpredictable ~100MB/s MCR



And?
• With robust migration mechanisms, load consolidation more reliable

• Currently have basic load management mechanism

• classifies servers by utilization - critical underload (<10%), lowly loaded, medium 
load, highly loaded, critical overload (>90%)

• move critically overloaded load to other server

• based on classification

• power up new server if not possible

• more critically underloaded load to other servers

• based on classification

• if load migrated off critically underloaded server, shut down server

• Have basic mechanism which works on our minimal lab resources

• Need to test it on larger deployment

• Also implementing more sophisticated approach with basic simulation tool



Initial results

• Simulation results show significant savings 
(40%)

• for synthetic workloads

• Significant savings possible for our own 
cloud based on workload analysis (40%)

• Quite underutilized resources



Next steps

• Enhance the load management mechanisms 
and understand how much savings are 
possible in different contexts

• Deploy basic mechanisms on pseudo-
production systems



Here’s Bruno...



Acknowledgement...

• Bruno and Vojtech did all of this work ;-)

http://blog.zhaw.ch/icclab/

@icc_lab

murp@zhaw.ch


