

Cloud-Native Application Design

Zurich University of Applied Sciences

Presenter: Sandro Brunner e-mail: brnr@zhaw.ch

Part of InIT - Institute of Applied Information Technology

Research Lab at ZHAW in Winterthur CH

Currently 25 Researchers

ICCLab - Research Topics

Zurich Univers

• Research Themes

- Energy Efficiency in Cloud Computing
- Infrastructure as a Service (IaaS)
- Platform as a Service (PaaS)

Research Initiatives

- Cloud Dependability and High Availability
- Cloud Incident Management
- Cloud Orchestration
- o Cloud Storage
- Cloud-Native Applications
- o Distributed Computing in the Cloud
- Energy Aware Cloud Load Management
- PaaS on OpenStack
- Rating Charging Billing
- Software Defined Networking for Clouds
- Understanding Cloud Energy Consumption

What is a Cloud-Native Application?

Application **optimized** to run in the cloud. Takes **advantage** and **considers the drawbacks** of the cloud-environment.

Main Characteristics of a Cloud-Native Application

Scalabilty & Resilience

Also possible to get there by **migrating** an already existing application.

Motivation

Exploiting Benefits of Cloud Computing

- Obtain IT-Resources on Demand (Compute, Storage, Network)
- Pay-as-you-go Pricing-Model \rightarrow No upfront costs
- Speeding-Up Development / Deployment Cycle
- Transfer responsibility of operating infrastructure
- ...

Can be boiled down to **economical** reasons/benefits

- \rightarrow Reduce Costs through Technology
- \rightarrow Improve Time-To-Market through Technology

- : Welcome Back, John Doe
- : Contents of Shopping Cart

: Welcome Back, John Doe

Zurich Univers

: Contents of Shopping Cart

Designing a Cloud-Native Application

 Next Step: Automate Scaling
Need to know "what's going on" Resource Usage, Response Times, ...
Need to be able to take actions accordingly

, ... cordingly

Application

School of

Engineering

State

Designing a Cloud-Native Application

Next Step: Automate Scaling - Need to know "what's going on" Resource Usage, Response Times

Resource Usage, Response Times, ... - Need to be able to take actions accordingly

 \rightarrow Monitoring System:

- Monitor Systems + Applications

- Collect / Aggregate Logs

Zurich Univers

Next Step: Automate Scaling

- Need to know "what's going on"

Resource Usage, Response Times,

Designing a Cloud-Native Application

Management System

Logs

Monitoring System

Zurich Unive

Zurich Univ

Cloud-Native Applications should be:

Scalable: Run as economically efficient as possible **Resilient**: Expect Failure / Infrastructure uses Commodity Hardware

Components of Cloud-Native Applications should be:

Stateless: Outage of a single component should not compromise the whole system Scalable & Resilient

Cloud-Native Applications are:

A composition of a variety of services (Application, Monitoring, Management) Distributed Systems Complex

Loads of problems already encountered and solved

Design Patterns for Cloud-Native Applications

→ Circuit Breaker, Valet Key, Bulkhead, Retry

Services offered by Cloud Vendor (Amazon, Google, Microsoft)

Open Source Libraries / Frameworks:

- → Netflix OSS e.g.: Hystrix, Ribbon, Chaos Monkey, etc.
- \rightarrow Twitter Zipkin, Snowflake, Finagle, Mesos
- \rightarrow Spring Cloud

Open Source Tools

→ Caches, Key-Value Stores, Webserver, Load-Balancer, Messaging/Queuing Systems, Service Registries, Configuration Management, Monitoring/Log Data Collection & Analysis, Load/Performance Tester

Questions

Links

ICCLab:

<u>http://blog.zhaw.ch/icclab/</u>

Cloud-Native Applications Initiative:

<u>http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/</u>

ZHAW InIT

<u>http://init.zhaw.ch/en/engineering/institutes-centres/institute-of-applied-information-technology.html</u>

Links II

Additional Resources

Book: Cloud Design Patterns

Libraries: Netflix OSS, Twitter Open Source, Spring Cloud

Caches / Key-Value Stores: Memcached, redis, etcd, Apache Zookeeper

DBs: Druid, Apache Cassandra, InfluxDB

Webserver / Proxys: <u>Apache HTTP Server</u>, <u>nginx</u>, <u>HAProxy</u>

Messaging/Queuing Systems: RabbitMQ, Apache Kafka, Queues.IO, beanstalkd, ejabberd

Configuration Management Tools: cdist, Chef, Puppet

Monitoring / Log Data Collection & Analysis: Zabbix, nagios, New Relic, Loggly, fluentd, logplex, Elasticsearch, logstash, kibana, Sensu

Load/Performance Tester: loader.io, Jmeter, stress, Tsung, httperf

Various: <u>Hystrix</u>, <u>Graphite</u>, <u>Jenkins</u>, <u>CloudFlare</u>, <u>Varnish</u>, <u>PgBouncer</u>, <u>Gearman</u>, <u>Quartz</u>