
CCP-EN © 2015 ZHAW / InIT

Zurich University of Applied Sciences

Presenter: Sandro Brunner
e-mail: brnr@zhaw.ch

Cloud-Native Application Design

CCP-EN © 2015 ZHAW / InIT

ICCLab

Part of InIT - Institute of Applied Information Technology

Research Lab at ZHAW in Winterthur CH

Currently 25 Researchers

CCP-EN © 2015 ZHAW / InIT

ICCLab - Research Topics
● Research Themes

o Energy Efficiency in Cloud Computing
o Infrastructure as a Service (IaaS)
o Platform as a Service (PaaS)

● Research Initiatives
o Cloud Dependability and High Availability
o Cloud Incident Management
o Cloud Orchestration
o Cloud Storage
o Cloud-Native Applications
o Distributed Computing in the Cloud
o Energy Aware Cloud Load Management
o PaaS on OpenStack
o Rating – Charging – Billing
o Software Defined Networking for Clouds
o Understanding Cloud Energy Consumption

CCP-EN © 2015 ZHAW / InIT

Cloud-Native Application

What is a Cloud-Native Application?
Application optimized to run in the cloud. Takes advantage and considers the
drawbacks of the cloud-environment.

Main Characteristics of a Cloud-Native Application
Scalabilty & Resilience

Also possible to get there by migrating an already existing application.

CCP-EN © 2015 ZHAW / InIT

Motivation

Exploiting Benefits of Cloud Computing
● Obtain IT-Resources on Demand (Compute, Storage, Network)
● Pay-as-you-go Pricing-Model → No upfront costs
● Speeding-Up Development / Deployment Cycle
● Transfer responsibility of operating infrastructure
● ...

Can be boiled down to economical reasons/benefits
→ Reduce Costs through Technology
→ Improve Time-To-Market through Technology

CCP-EN © 2015 ZHAW / InIT

NFV vs Cloud-Native Applications I

Specialized HW

Specialized OS

NF

HW

OS

VM VM

OS OS

NF NF

Hosting (e.g.: Cloud)

Application

CCP-EN © 2015 ZHAW / InIT

NFV vs Cloud-Native Applications II

Specialized HW

OS

Application

HW

OS

VM

OS

App App

Hosting in Cloud

Application
(Instances)

C
on

ta
in

er

CCP-EN © 2015 ZHAW / InIT

Designing a Cloud-Native Application

Example: Simple Web-Application Web Server

App Server

DatabaseA
pp

lic
at

io
n

Application
-Session-State

: Welcome Back, John Doe
: Contents of Shopping Cart

CCP-EN © 2015 ZHAW / InIT

Example: Simple Web-Application Web Server

App Server

DatabaseA
pp

lic
at

io
n

Application
-Session-State

: Welcome Back, John Doe
: Contents of Shopping Cart

Too much load for current configuration

→ Naive Solution: Scale Up / Get Bigger Machine

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Example: Simple Web-Application Web Server

App Server

DatabaseA
pp

lic
at

io
n

Application
-Session-State

: Welcome Back, John Doe
: Contents of Shopping Cart

Application
-Session-State

Too much load for current configuration

→ Naive Solution: Scale Up / Get Bigger Machine

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Example: Simple Web-Application Web Server

App Server

DatabaseA
pp

lic
at

io
n

Application
-Session-State

: Welcome Back, John Doe
: Contents of Shopping Cart

Application

-Session-State

Are resources really optimally used?
What if the application crashes?
Vertical scaling is limited.

→ Vertical scaling is not optimal solution

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Web Server

App Server

DatabaseA
pp

lic
at

io
n

Application
-Session-State

Better Solution: Horizontal Scaling
→ Resources used more efficiently
→ No over- or underprovisioning of resources

Application
-Session-State

Application
-Session-State

Application
-Session-State

Load Balancer

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Web Server

App Server

DatabaseA
pp

lic
at

io
n

Application
-Session-State

Application
-Session-State

Application
-Session-State

Application
-Session-State

Load Balancer

Beware!
→ Save state outside of component!
→ Failure of component should not
 influence the rest of the system

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Web Server

App Server

DatabaseA
pp

lic
at

io
n

Load Balancer

Application
Application

Application
State

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Web Server

App Server

DatabaseA
pp

lic
at

io
nNext Step: Automate Scaling

- Need to know “what’s going on”
Resource Usage, Response Times, …

- Need to be able to take actions accordingly

Load Balancer

Application
Application

Application
State

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Web Server

App Server

DatabaseA
pp

lic
at

io
nNext Step: Automate Scaling

- Need to know “what’s going on”
Resource Usage, Response Times, …

- Need to be able to take actions accordingly

Load Balancer

Application
Application

Application
State

Monitoring System Logs

→ Monitoring System:
- Monitor Systems + Applications
- Collect / Aggregate Logs

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Web Server

App Server

DatabaseA
pp

lic
at

io
nNext Step: Automate Scaling

- Need to know “what’s going on”
Resource Usage, Response Times, …

- Need to be able to take actions accordingly

Load Balancer

Application
Application

Application
State

Monitoring System Logs

→ Monitoring System:
- Monitor Systems + Applications
- Collect / Aggregate Logs

→ Management System:
- Input from Monitoring System
- Able to scale system up or down

Management System

Designing a Cloud-Native Application

CCP-EN © 2015 ZHAW / InIT

Summary Cloud-Native Applications

Cloud-Native Applications should be:
Scalable: Run as economically efficient as possible
Resilient: Expect Failure / Infrastructure uses Commodity Hardware

Components of Cloud-Native Applications should be:
Stateless: Outage of a single component should not compromise the whole system
Scalable & Resilient

Cloud-Native Applications are:
A composition of a variety of services (Application, Monitoring, Management)
Distributed Systems
Complex

CCP-EN © 2015 ZHAW / InIT

How to Build Cloud-Native Applications

Loads of problems already encountered and solved

Design Patterns for Cloud-Native Applications
→ Circuit Breaker, Valet Key, Bulkhead, Retry

Services offered by Cloud Vendor (Amazon, Google, Microsoft)

Open Source Libraries / Frameworks:
→ Netflix OSS – e.g.: Hystrix, Ribbon, Chaos Monkey, etc.
→ Twitter – Zipkin, Snowflake, Finagle, Mesos
→ Spring Cloud

Open Source Tools
→ Caches, Key-Value Stores, Webserver, Load-Balancer, Messaging/Queuing
Systems, Service Registries, Configuration Management, Monitoring/Log Data
Collection & Analysis, Load/Performance Tester

CCP-EN © 2015 ZHAW / InIT

Questions

CCP-EN © 2015 ZHAW / InIT

Links
ICCLab:

• http://blog.zhaw.ch/icclab/

Cloud-Native Applications Initiative:
• http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/

ZHAW InIT
• http://init.zhaw.ch/en/engineering/institutes-centres/institute-of-applied-information-technology.html

http://blog.zhaw.ch/icclab/
http://blog.zhaw.ch/icclab/
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/
http://blog.zhaw.ch/icclab/category/research-approach/themes/cloud-native-applications/
http://init.zhaw.ch/en/engineering/institutes-centres/institute-of-applied-information-technology.html
http://init.zhaw.ch/en/engineering/institutes-centres/institute-of-applied-information-technology.html

CCP-EN © 2015 ZHAW / InIT

Links II
Additional Resources

Book: Cloud Design Patterns
Libraries: Netflix OSS, Twitter Open Source, Spring Cloud
Caches / Key-Value Stores: Memcached, redis, etcd, Apache Zookeeper
DBs: Druid, Apache Cassandra, InfluxDB
Webserver / Proxys: Apache HTTP Server, nginx, HAProxy
Messaging/Queuing Systems: RabbitMQ, Apache Kafka, Queues.IO, beanstalkd, ejabberd
Configuration Management Tools: cdist, Chef, Puppet
Monitoring / Log Data Collection & Analysis: Zabbix, nagios, New Relic, Loggly, fluentd, logplex,

 Elasticsearch, logstash, kibana, Sensu
Load/Performance Tester: loader.io, Jmeter, stress, Tsung, httperf
Various: Hystrix, Graphite, Jenkins, CloudFlare, Varnish, PgBouncer, Gearman, Quartz

https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://netflix.github.io/
https://engineering.twitter.com/opensource/projects
http://projects.spring.io/spring-cloud/
http://memcached.org/
http://redis.io/
https://github.com/coreos/etcd
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html
http://www.druid.io/
http://cassandra.apache.org/
http://influxdb.com/
http://httpd.apache.org/ABOUT_APACHE.html
http://nginx.org/en/
http://www.haproxy.org/
http://www.rabbitmq.com/
http://kafka.apache.org/documentation.html#introduction
http://queues.io/
http://kr.github.io/beanstalkd/
https://www.ejabberd.im/
http://www.nico.schottelius.org/software/cdist/
http://www.getchef.com/
http://puppetlabs.com/
http://www.zabbix.com/
http://www.nagios.org/
http://newrelic.com/platform
http://www.loggly.com/
http://www.fluentd.org/
https://github.com/heroku/logplex
http://www.elasticsearch.org/guide/
http://logstash.net/docs/1.4.2/
http://loader.io/
http://jmeter.apache.org/
http://people.seas.harvard.edu/~apw/stress/
http://tsung.erlang-projects.org/
http://www.hpl.hp.com/research/linux/httperf/
https://github.com/Netflix/Hystrix
https://graphite.readthedocs.org/en/latest/overview.html
http://jenkins-ci.org/
https://www.cloudflare.com/
https://www.varnish-cache.org/about
https://wiki.postgresql.org/wiki/PgBouncer
http://www.gearman.org/
http://quartz-scheduler.org/

