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Abstract—Sensitive data is increasingly being hosted online
in ubiquitous cloud storage services. Recent advances in multi-
cloud service integration through provider multiplexing and data
dispersion have alleviated most of the associated risks for hosting
files which are retrieved by users for further processing. However,
for structured data managed in databases, many issues remain,
including the need to perform operations directly on the remote
data to avoid costly transfers. In this paper, we motivate the
need for distributed stealth databases which combine properties
from structure-preserving dispersed file storage for capacity-
saving increased availability with emerging work on structure-
preserving encryption for on-demand increased confidentiality
with controllable performance degradation. We contribute an
analysis of operators executing in map-reduce or map-carry-
reduce phases and derive performance statistics. Our prototype,
StealthDB, demonstrates that for typical amounts of personal
structured data, stealth databases are a convincing concept for
taming untrusted and unsafe cloud environments.

I. INTRODUCTION AND DEFINITIONS

Companies and individuals are for various reasons entrust-
ing sensitive information to non-trustworthy services. Medi-
cal records, tax declarations, bills of material and planning
documents are among the diverse kinds of data. This is
a trend with both benefits and risks. In general, the risks
include a lack of trust (what happens with the data, who
else can access it) and robustness (will the user be able to
access the data even in case of failures). Research on cloud
storage integration systems advocates for a division of data
across multiple independent storage services with appropriate
coding and redundancy (dispersed storage) so that the loss of
individual services can be tolerated and all providers would
need to cooperate to access the entire data without user consent
[1]. In practice, such information dispersal and secret sharing
schemes offer sufficient safeguarding against eavesdropping
and service unavailability, especially when being combined
with encryption schemes.

However, storing data remotely and still processing it locally
does generally not constitute a satisfactory design due to a high
volume of data transmission and the concentration of load on a
single client-side system. Typical data processing and analytics
scenarios include ‘needle in a haystack’ string searches which

yield a few records out of gigabytes of data, and statistical
calculations over streams of sensor data. Ultimately, the user
of the application needs to take a decision on the trade-off
between confidentiality, availability, capacity and performance
resulting from the coding parameterisation.

In order to overcome the limitations of untrusted and
low-quality environments, dispersed computing concepts have
been designed to distribute data storage, transmission and
processing across any number of infrastructure services with
a selected degree of redundancy for higher availability [2].
Assuming the non-cooperation of service providers, these
concepts also increase the privacy of users.

Stealth computing extends dispersed computing by a
stronger notion of confidentiality and privacy preservation.
This concept is supposed to protect against the knowledge
of what is being processed where, how and by whom. His-
torically, stealth software has been associated with a negative
connotation mostly due to stealth computer viruses (malware)
which are hard to detect [3]. Given recent major concerns
about user privacy in cloud environments [4], there is a legit-
imate need for users to apply the stealth principles to protect
their own activities in the cloud. The stealthiness is achieved
by careful coding, in particular, encrypting the dispersed data
fragments in a way that their structure is preserved to the
extent that operations can still be performed on them. Fig. 1
visualises the general principle of stealth coding.

Fig. 1. Stealth coding principle: Combined (chained) coding for combined
protection goals



However, while proper coding is essential, it is not a
sufficient protection in dynamic environments such as public
cloud services. Instead, dynamic reconfigurability of the data
fragment location over multiple resource services and adaptive
processing depending on the service capabilities need to be
considered as well. Fig. 2 conveys the main idea of stealth
computing in the context of service evolution over time.
Instead of letting applications handle typical security and other
evolution risks with individual error-prone methods, a light-
weight stealth layer is made available to the application as a
library or proxy service. The interfaces of the layer correspond
to typical platform-level middleware services, such as file
and object storage, databases, message queues and execution
runtimes.

Fig. 2. Stealth layer to protect against the risks of data-centric service
evolution over time

We could not find prior stealth computing approaches and
hence have explored the design and behaviour of a stealth
database system. The associated research challenges are (1)
to design appropriate operators which can process stealth-
coded data and (2) to find sweet spots in the trade-off between
the expected slow-down and the transmission savings. In the
following, we report on using stealth computing concepts
within relational and non-relational column-store database ar-
chitectures. First, we introduce concepts for a stealth database
system which works in untrusted and unstable cloud environ-
ments. Then, we describe an implementation of such a system
and explain how it performs and how it solves the research
questions. Finally, we conclude with a critical review of our
work and a comparison against related systems.

II. STEALTH DATABASE CONCEPTS

A stealth database is a database management system which
distributes its data and processing across several local re-
sources as well as cloud storage and compute services with
minimum redundancy in a way that neither the data nor
intermediate processing results can be meaningfully inter-
preted by an adversary who gains read-only access to any
subset of the services or full control over the redundant

subset. Furthermore, despite service changes over time and
unavailable services, stealth databases guarantee access to the
data and responsiveness to queries with graceful degradation of
accuracy, precision or completeness in the presence of service
problems.

This stealthiness property is achieved by combining data
coding and distribution methods to increase the confidentiality,
integrity and availability of the data in unsafe and dynam-
ically evolving cloud computing environments. In particular,
information dispersal techniques with selective redundancy are
combined with query-aware and privacy-preserving encryption
techniques. For the information dispersal, bitsplitting is used
due to its structure-preserving nature, which makes the result-
ing data fragments suitable for many arithmetic and analytical
algorithms [5]. Each data value is split into k significant and m
redundant fragments, for a total of n = k+m(k ≥ 1,m ≥ 0).
For the encryption, both homomorphic encryption (HE) [6]
and order-preserving encryption (OPE) [7], [8] are employed
on numeric data types to ensure that arithmetics and order-
dependent queries can be performed on the encrypted data. For
example, a range-aggregate query SELECT SUM(x) FROM
table WHERE x < 5 requires the column x to be en-
crypted in both an HE and an OPE cryptosystem because
HE is not order-preserving by design and OPE does not
support arithmetics. Furthermore, searchable encryption (SE)
is employed on text data types. The order of coding mandates
dispersion before encryption in order to maintain the value
structures.

To support the distribution of individual value fragments,
stealth databases take advantage of a relational sub-column
store design where each column is dispersed across several
resource services. For improved flexibility, we propose a
resource/service multiplexing so that each column can be
wholly or partially located in memory, on disk or in the cloud.
Furthermore, it is assumed that a trustworty client application
is available to interact with the untrusted cloud environment
through sessions and to keep (minimal) table and keys state,
and that cloud providers obey to the honest-but-curious threat
model [9] although provisions are made to protect against
byzantine failures. Trust may differ in each cloud provider;
we assume that if it matters, it can be quantified as a non-
functional property and used in the fragment distribution target
selection and scheduling [10].

The following two subsections describe the storage layer of
stealth database, i.e. the coding and distribution of data to var-
ious storage targets, and the processing layer, i.e. placement of
database operators as close as possible to the data. Afterwards,
type-dependent coding and the optimisation of insertions and
queries regarding user-defined non-functional properties are
elaborated on.

A. Data Coding, Distribution and Storage Combinations

A stealth database needs to function in the presence and
absence of appropriate storage services. Therefore, its storage
and access model forms a hybrid combination of an in-memory
database which stores data in RAM, an embedded database



which stores in files, and a distributed system which stores in
appropriate services with and without compute capabilities.

1) Memory: Data is stored inside data structures in RAM
and either discarded or persisted when a session ends.

2) File: Data is stored in one file per column or more
efficient binary file structures.

3) Cloud: Data is sent to and retrieved from services with
at least a CRUD (create, read, update, delete) storage
interface.

Apart from the storage, the design also mandates where
calculations take place. Typical database calculations are ag-
gregations, filters, sorts and user-defined functions as well as
relations across columns. Fig. 3 expresses the combination of
memory, file and cloud databases. While calculations in the
embedded database configurations (memory and file) as well
as pure cloud storage configurations happens centrally, for full
cloud compute services there is a choice to perform remote
calculations depending on both the type of data and any prior
coding and modification of its representation. The proposed
programming model is map-reduce. When the mapping leads
to ambiguous results due to missing entropy in sub-column
value fragments, an iterative map-carry-reduce method with
a handover protocol between the services needs to be used
which effectively limits the parallel operator execution [5].

Fig. 3. Stealth database design with multiple storage locations

The data is distributed among the storage locations in a
specified manner. The amount of redundancy influences the
availability of data and the reliability of calculation results.

1) Random, round-robin or selective single placement: Data
is stored at a single location, potentially depending on
availability or capacity constraints, i.e. k = 1,m = 0.

2) Selective or weighted replication: Data is replicated a
number of times and all replicas are placed according
to algorithms such as balanced hash rings with k <
n,m = 0 [11].

3) Full replication: Data is stored in all locations in parallel,
leading to, for instance, triple replication with k > 1 and
m = 0.

4) Dispersion or partial replication: Data is split into mul-
tiple fragments with a degree of redundancy less than a
full replica, i.e. m > 0.

While replication offers a good trade-off between a low
number of nodes and a high availability, the strength of
dispersion is in the trade-off between low capacity and a higher
number of tolerated node failures. Multiple dispersion schemes
exist, out of which only a few lead to fragments that can be
interpreted individually.

1) Erasure coding: Data is erasure-coded with a certain
amount of redundancy and then split and stored. Frag-
ments from the significant number of nodes are needed
to interpret the data.

2) Secret sharing: Leads to fragments of the size of the
original data. All fragments are needed to interpret the
data.

3) Bitsplit coding: Similar to erasure coding, but using
bitsplitting to allow for subsequent calculation on the
data [5].

4) Content-specific fragments: For image files, the images
are split visually and missing fragments can be interpo-
lated.

Fig. 4 shows the difference between first three of the
distribution modes for both a string value with five character
bytes and an integer value which is represented as two bytes.

Fig. 4. Distribution modes: (a) random/round-robin/selective replication, (b)
full replication, (c) bitsplit-coded with redundancy, fragment size is 8 bit

Generally, the following data types can be stealth-coded in
a meaningful way:

1) Integer numbers.
2) Floating point numbers, by conversion to fixed-point

numbers.
3) Strings.
4) Complex types, by decomposition into a combination of

simple types.
In order to protect the data against additional security

threats, in particular confidentiality violations, the data needs
to be encrypted. Again, various options need to be considered.

1) Plain: Data is stored without encryption.
2) Conventional encryption: Symmetric encryption, requir-

ing to store the key on the client side and fetching all
data for processing.

3) Convergent encryption: Symmetric, using the hash value
of the data as key. Needed for de-duplication of en-
crypted values.



4) Homomorphic encryption: Asymmetric encryption
which allows for secure remote calculation. Keys need
to be stored by the client with public keys propagated
to each location.

5) Order-preserving encryption: Symmetric. Needed to sup-
port remote order-dependent calculations such as sort-
ing.

6) Searchable encryption: Symmetric stream encryption
with a private key and an initialisation vector. Needed
to perform pattern and regular expression search over
encrypted data.

The combination of operation-, distribution- and type-aware
data coding shall be called stealth coding for it is a core
enabler of stealth computing in addition to runtime facilities.

Additional meta-data about the data needs to be kept on
demand to extend the support to a broader set of operations,
and additional modifications may be applied to the data
to favour non-functional properties other than security, such
as performance or capacity. Similar to different encryption
schemes, multiple modifications can be combined.

1) Simple: Data is stored without additional meta-data or
modifications.

2) Ordering: Meta-data about the absolute position of a
value in a column. Used for combination with OPE
and for retrieval from selectively or randomly distributed
data when guarantees about the order are essential.

3) Compression: Reduction of the capacity requirements,
but also restriction of the operations which can be
performed.

4) Redundancy: Configuration of a minimum level of re-
dundancy.

The proposed configurability encompasses 4 base codings,
23 + 1 = 9 coding modification combinations, 23 + 2 = 10
encryption combinations and 4 base distributions. The combi-
nation of all coding, distribution and storage location choices
leads to already 4320 configurations for only two nodes. Only
a part of the configuration space will be suitable for remote
processing over the resulting data. Therefore, the database
system needs to be adaptive in choosing the right processing
model for each operation in any given distributed data context.

B. Data Processing, Mapping and Reduction Combinations

Depending on the combination of location, distribution,
coding and modification, the data processing workflow is
transparently adapted to achieve a high data management qual-
ity in unsafe cloud environments. The quality is determined by
the application preferences so that users have the possibility
to exploit the data distribution. Whenever data fragments are
stored in a compute cloud, either unencrypted or with an
encryption scheme interpretable for an incoming query, then
the associated query part is performed through the compute
service as much as possible.

The query may have to follow the dispersion and be
rewritten for each location in order to apply to the fragments
stored in it. For instance, the query clause SELECT x WHERE

x = 269 over a 16-bit column x dispersed into two 8-bit sub-
columns becomes WHERE x = 1 for the high-bit location
and WHERE x = 13 for the low-bit representation, as shown
in Fig. 5. Subsequently, the results of these two queries, which
can be carried out in parallel without the risk of conflicts, must
be reduced again on the trusted client with a JOIN semantics
to filter out partial matches. For relations across columns, the
reduction records the position (row) of the value. The set of
positions can then be used as filter for the subsequent iterative
processing, for instance in a query of the form SELECT y
WHERE x = 269 which then becomes SELECT y WHERE
@pos = 99 if the requested value of x can be found at this
position. This method minimises cross-pollution of knowledge
across cloud providers and thus maintains a high degree of
confidentiality. However, it induces the need for iterative map-
carry-reduce operations which involve the trusted client as
intermediary.

Fig. 5. Rewriting queries for each sub-column store

Stealth databases need to consider all processing primi-
tives, including search, aggregates, predicates, comparisons
and arithmetic term evaluations, to be of relevance to ap-
plication developers despite the obvious restrictions due to
the challenges arising from the use of specific coding and
distribution schemes [12], [13]. The operators SUM(x) and
AVG(x) are perfectly parallelisable. The query SELECT
AVG(ROUND(x)+1) gives an example for a more complex
query which determines the average value of a number of
additions of one plus the rounded representation of each entry
in the column x. It can still be parallelised by exploiting the
split on the decimal fraction position.

Table I explains in detail how aggregate, predicate and
comparison operators in the structured query language (SQL)
work on dispersed data fragments. Parallel map-reduce (MR)
and iterative map-carry-reduce (MCR) are possible execution
modes, and homomorphic, order-preserving and searchable
encryption (HE, OPE and SE, respectively) are prerequisites
to enable the mode. An asterisk (*) means that an arbitrary
encryption scheme will work whereas a dash (-) means that
no encryption can be used for remote processing. A dash in
the mode column likewise means that no dispersed remote
execution is possible at all due to missing mathematical con-
cepts for function composition. The table further informs about



the possibility to achieve controlled degradation through either
approximate results or at least ambiguous but small approxi-
mation sets in the case of service failures assuming the higher-
bit services are still available. All operators work on INT and
REAL columns except for ROUND which is useful for a fixed-
point representation of REAL and UPPER/LOWER/LENGTH
which work on TEXT strings. As the table reveals, more
research will be necessary to allow for additional stealth pro-
cessing functions. Recent research on distributed computing
models suggests more generalised map-filter-sort-aggregate-
reduce operator pipelines for big data processing [14] which
can be allocated dynamically by consulting the operator table
and therefore becomes a suitable implementation choice.

TABLE I
SQL OPERATORS WITH MAP-(CARRY-)REDUCE IMPLEMENTATIONS

Operator Encryption Mode Degradation
MIN,MAX OPE MCR approx-set
AVG HE MR approximation
MEDIAN OPE MCR approx-set
SUM HE MR approximation
COUNT * MR (never)
ROUND/FLOOR/CEIL - - -
ABS - - -
SIN/COS/TAN - - -
SQUARE/SQRT - MCR -
UPPER/LOWER Caesar MCR -
LENGTH Caesar,OTP MR (never)
=,<> * MR approx-set
<,> OPE MCR approx-set
LIKE SE MR -

Implementations typically employ optimisations through
caching of pre-calculated aggregates to deliver some of the
results. This is especially true for incrementally updateable
aggregates, i.e. COUNT,MIN,MAX,AVG,SUM.

Any encryption must be performed after the splitting be-
cause otherwise the fragments may end up containing values
which have no representation in the cryptospace and thus
become invalid for arithmetic operations. The queries are
rewritten to contain the encrypted values, for instance WHERE
x = 349235, and matched on the cloud side against the
already encrypted values without conveying knowledge about
the original match value.

C. Type-Dependent Coding

Database management systems with SQL interfaces usually
support more than 20 column types. Among the fundamental
ones are strings, integers, floating-point numbers and boolean
expressions. Depending on the type of data, the targeted coding
for subsequent remote processing is important. Floating-point
numbers need to be converted to integer fixed-point approxi-
mations for arithmetic calculations when dispersion or HE are
applied [15]. All integer values need to be converted to their
native representation before dispersion splitting and joining
occurs. Furthermore, signed integers may need conversion
to unsigned types due to the calculation of logarithm and

other function in many encoding steps. Without the need for
arithmetics, for instance when only equality comparisons are
performed, using a generic string representation of all data
types will also be an option.

D. Optimisation for Non-Functional Properties

Stealth databases should be adaptive towards a user’s goals
regarding security, performance, cost and other non-functional
properties. For this purpose, stealth databases offer a per-
query goal specification for optimising the query results
regarding user-specified non-functional properties. With the
syntax SELECT ... OPTIMIZE FOR <goal>, the fol-
lowing goals can be specified:

1) Reliability: For values stored with replication, all repli-
cas are fetched and compared to be equal instead of
just fetching a single one. In the case of mismatches,
a local majority voting is performed to determine the
relative, absolute or even byzantine majority. A user-
specified threshold determines which majority must be
achieved. Typically, byzantine majority is required in
untrusted cloud environments [16].

2) Performance: For values stored with dispersion, only
the most significant fragments are processed, retrieved
and combined. This method yields results with limited
accuracy, precision or completeness, but achieves on
average a higher performance than having to wait for
all fragments to arrive. When used with fixed-point
numbers, the method can be effectively used for the
FLOOR() function without additional processing over-
head.

III. STEALTH DATABASE EVALUATION

In order to evaluate the proposed concepts, we first present
our prototypical implementation of a novel type of database
management software called StealthDB. Afterwards, we per-
form stealth query experiments in both a cluster and a cloud
environment.

A. StealthDB Software Design and Prototype

StealthDB is a prototypical realisation of an embedded
stealth database layer for heterogeneous device and cloud
environments. The main idea is to make stealth processing
accessible to applications using a well-known interface which
resembles relational ones. It offers an SQL and a library
method interface which both allow for specification of non-
functional properties upon insert and select operations.

StealthDB essentially maintains locally a set of databases, a
set of tables per database, and a set of columns per table. Each
column is stored in a combination of resources: main memory,
files and remote storage and compute services (Fig. 6). When-
ever a cloud possesses compute capabilities, processing can be
offloaded to it through a deployable StealthDB-Cloud service.
Without this capability, StealthDB gracefully falls back to local
processing by fetching all effected remote columns from the
storage services unless they are fully replicated locally.



Fig. 6. StealthDB software architecture

The implementation of StealthDB is based on Python3 with
the Pyro RPC and WSGI/HTTP frameworks and the Dispersed
Algorithms library [5] as well as further libraries for homo-
morphic, order-preserving and searchable data encryption. The
StealthDB-Cloud service containing the remote operators can
run as standalone daemon in a VM/container or as part of a
web stack, for instance in a PaaS environment such as Google
App Engine, CloudFoundry or OpenShift. StealthDB offers
a command-line interface similar to popular RDBMS but can
also be integrated into applications as a library through a single
Python module called stealthdb.py. Listing 1 shows a
sample session when using StealthDB interactively for medical
data management in a cloud environment. All cloud services
are assumed to be registered in a global or per-cluster RPC
naming service to avoid the direct use of hostnames. The
encryption and dispersion happens transparently to the user
without the need to require special SQL extensions apart from
the initial specification.

Listing 1. Secure storage and retrieval of a medical record
USE CLOUDS ’cloud://ec2’ AND ’cloud://ostack-
private’ WITH ’encryption,dispersion’;

DROP TABLE IF EXISTS medrecord;
CREATE TABLE medrecord (id INT, personname
TEXT, weight REAL);

INSERT INTO medrecord (id, personname, weight)
VALUES (23, "Alice", 63.0);

SELECT * FROM medrecord WHERE
personname = "Alice";

SELECT AVG(weight) FROM medrecord;

In the sample, a triple record is stored across two cloud
providers without redundancy. All three values are bit-split into
two fragments according to their data types. All six fragments
are encrypted into their homomorphic representation. The
keypair is persisted locally and the public keys are stored
along with the data in anonymised files by the two instances
of StealthDB-Cloud workers or plain storage services. Then,
both calculation and search are performed over the dispersed
and encrypted data according to the algorithms for dispersed
data [5].

When used in a cluster, the Pyro naming service can be

queried to get a list of all registered workers. This simplifies
the syntax towards USE CLOUDS ’auto’ for large-scale
clusters. Furthermore, to support long-term service evolution,
new storage and compute services as well as deprecated
services can be signalled to StealthDB by the naming service.
The migration support, described below, ensures that the
distribution of data can be progressively adapted to the evolved
set of services.

If the insertion of data fails due to the non-availability of
a node or a write error to the disk, the failure handler can
be configured to store the data in memory within the trusted
StealthDB layer temporarily and retry the write operation later.
This feature is useful to keep the application logic lean in
the presence of frequent network connection issues which are
common with mobile applications. This feature is also used
by mass inserts encapsulated into a transaction context.

For encrypted values, a key size check is performed for
cases where keys cannot be concatenated and data values must
not be larger than the keys. This protects against unwanted
information leakage and data corruption.

StealthDB supports migrations of columns between different
storage areas or coding and distribution schemes. Again, the
trusted client is used as intermediate during the migration
transaction. Following the example given before, Listing 2
shows the effects of migrating the weight column out of
the cloud onto fully replicated local disks. The listing shows
how StealthDB’s debugging messages, which can enabled on
demand, help to understand the background activities of the
database system.

Listing 2. Migration of a medical record
ALTER TABLE medrecord ALTER COLUMN weight USE

CLOUDS ’file:///securefolder’ AND ’file:///
secureshare’ WITH ’encryption,replication’;

...
(DEBUG messages follow)
(migration:fetch)
(decryption:privkey=PrivateKey(l=19..,m=92..),

pubkey=PublicKey(n=19..,nsq=39..,g=19..),
entry=32..)

(decrypt-safe)
(decryption:result=13091)
(decryption:privkey=PrivateKey(l=19..,m=92..),

pubkey=PublicKey(n=19..,nsq=39..,g=19..),
entry=24..)

(decrypt-safe)
(decryption:result=25568)
(dispersion:decoded=63.0)
(migration:re-configure columns)
(migration:store)
(encryption:conv=909323824,bytes=b’63.0’)
(encryption:encrypt-safe)
(encryption:privkey=PrivateKey(l=26..,m=61..),

pubkey=PublicKey(n=26..,nsq=70..,g=26..),
data=21..)

The StealthDB software is publicly available to interested
users1. A systematic test suite which runs a number of SQL
statements over all possible combinations of data coding,

1StealthDB website: http://lab.nubisave.org/stealthdb/



distribution and storage location is also available to evaluate
the fitness of the system for any application scenario.

B. Performance Evaluation

To observe the behaviour and the performance character-
istics of StealthDB, we designed an experiment called the
million movie management benchmark. The benchmark is kept
very simple on purpose. It generates one million artificial
movie names, inserts them into a text column in conjunction
with a unique numeric identifier column, and selects all entries
both ordered and unordered. Furthermore, it selects the sum
of all identifiers which is a constant n(n+1)

2 for n = 1000000
equal to 500000500000. Whenever adequate, we determined
the results for different CPU frequencies. Three computing
environments with different characteristics were prepared.
We tested StealthDB on a notebook, on a resource-limited
Raspberry Pi cluster and in a ‘big iron’ private research cloud.

The benchmark was first executed on a notebook with
an quad-core Intel Core i7 M620 CPU with a maximum
frequency of 2.67 GHz and 6 GiB of memory running Debian
7.5, the Linux kernel 3.2.0 and Python 3.2.3. StealthDB was
configured to use a single in-memory storage area. Table
II shows both the internal function runtime, retrieved with
EXPLAIN ANALYZE and MODE quiet, and the overall
runtime, including all input and output messages on the screen
and the local table structure storage, for each step of the
benchmark. All measurements were performed five times to
produce stable mean values. It should be noted that the slow
import performance caused by a million INSERTs can be
solved trivially with additional software engineering by adding
a mass-import interface similar to for instance MySQL’s bulk
data loading. We consider the completeness of the database
system to be out of scope for our research and focus rather
on the stealth processing capabilities.

TABLE II
MILLION MOVIES MANAGEMENT RESULTS ON THE NOTEBOOK

Benchmark step Backend Runtime Overall
INSERT memory - 245.30s
INSERT file - 400.17s
SELECT memory 0.09s 1.54s
SELECT file 0.51s 0.65s
SELECT ORDER BY memory 2.09s 3.56s
SELECT ORDER BY file 2.49s 2.80s
SELECT SUM(id) memory 1.09s 2.54s
SELECT SUM(id) file 1.47s 1.57s

In order to determine the performance overhead of ho-
momorphic encryption, the in-memory benchmark has been
repeated with encryption enabled. Table III contains the re-
sults. An interesting observation is that while the overhead
is extraordinarily high in all cases, there are large deviations
between the overheads which hint at separate optimisation
potentials.

To perform the experiments in a cluster environment, we
used Bobino, an 8-node Raspberry Pi cluster engineered at

TABLE III
MILLION MOVIES MANAGEMENT WITH ENCRYPTION

Benchmark step Backend Runtime Overhead
INSERT memory:crypt 65685.00s 266.7
SELECT memory:crypt 114.12s 1267.0
SELECT ORDER BY memory:crypt 116.12s 54.6
SELECT SUM(id) memory:crypt 110.70s 101.6

the Free University of Bolzano as smaller cousin of the 40-
node Bobo cluster [17]. Bobino contains a gateway node which
connects the internal Ethernet topology to the outside world, a
brain node with custom web-based software to coordinate the
allocation of all nodes, a recovery node for fault situations,
and a custom-built power distribution. All nodes are Pi Model
B with a 700 MHz ARMv6 CPU which can be safely
overclocked to a turbo mode of 1000 MHz, 512 MiB of main
memory (485 MiB free for applications) and a 100 MBit/s
Ethernet port. The operating system, which boots from 4 GB
SD cards, has been updated to match closely the specifications
of the notebook. Bobino runs Raspbian (Debian) 7.6 with
Linux kernel 3.10.25 and Python 3.2.3. We installed StealthDB
workers (stealthdb-cloud) on each of the nodes and the
system frontend (stealthdb) on the gateway node. Fig. 7
shows a photo of the cluster while it runs StealthDB at the
default frequency of 700 MHz.

Fig. 7. Bobino, the Raspberry Pi cluster used in our experiments

Table IV summarises the performance results when running
StealthDB either with a locally dispersed file-backed database
or with dispersion across three nodes using RPC access to the
storage and compute cloud interfaces of the nodes.

StealthDB has furthermore been installed on a cloud server
system provided by the Hasso Plattner Institute’s Future SOC
Lab as a remote service. Compared to the other two test
environments, no part of the overall server system has been
under our direct control. The hardware consists of four out of
32 HP Converged Cloud blades, each with 2 Intel Xeon E5-
2620 CPUs (à 6 cores/12 threads) running at 2.0 GHz and 64



TABLE IV
MILLION MOVIES MANAGEMENT RESULTS ON THE BOBINO CLUSTER

Benchmark step Backend Runtime
INSERT file 19999.00s
INSERT file:disp 30749.00s
INSERT cloud:disp 262391.00s
SELECT file 21.91s
SELECT file:disp 376.30s
SELECT cloud:disp 428.33s
SELECT ORDER BY file 30.39s
SELECT ORDER BY file:disp 389.22s
SELECT ORDER BY cloud:disp 428.90s
SELECT SUM(id) file 83.81s
SELECT SUM(id) file:disp 490.28s
SELECT SUM(id) cloud:disp 443.23s

GiB of memory and an NFS-connected 3PAR disk array with
3 TB capacity. The blades are interconnected by 10G Ethernet.
The system runs Ubuntu 14.04 with Linux kernel 3.13.0 and
Python 3.4.0.

The results of running StealthDB in the cloud are con-
solidated in Table V. Again, the results compare all-local
dispersed files with dispersed cloud access from one blade to
the three other ones. Additionally, homomorphic encryption
of fragments in the cloud is used for higher protection of
their sensitive contents. The principal observations are that (1)
transmitting RPC messages massively decreases the insertion
performance but is otherwise competitive against the local disk
speed, and (2) the parallel dispersed processing over encrypted
numbers speeds up the execution considerably compared with
the local decryption process.

TABLE V
MILLION MOVIES MANAGEMENT RESULTS IN THE CONVERGED CLOUD

Benchmark step Backend Runtime
INSERT file:disp 815.30s
INSERT cloud:disp 17972.00s
INSERT cloud:disp:crypt 224877.00s
SELECT file:disp 11.99s
SELECT cloud:disp 13.54s
SELECT cloud:disp:crypt 444.68s
SELECT ORDER BY file:disp 12.82s
SELECT ORDER BY cloud:disp 14.11s
SELECT ORDER BY cloud:disp:crypt 444.50s
SELECT SUM(id) file:disp 14.51s
SELECT SUM(id) cloud:disp 14.92s
SELECT SUM(id) cloud:disp:crypt 80.67s

C. Comparison and Limitations

Insertions and basic range-aggregate queries have been
implemented in StealthDB which with this functionality take
less than 2000 lines of Python code. An exploration and
implementation of range-aggregate deletions and updates is
currently missing. Furthermore, while basic fault handling and
transaction semantics are available, the database system is not
guaranteeing ACID properties.

In order to allow for a comparison with popular database
management systems, additional experiments have been per-
formed on the notebook system running at 2.7 GHz. Ta-
ble VI summarises the performance values when using the
embedded SQlite database system, version 3.7.13, for in-
memory and file-backed operations. The INSERTs have been
executed in a transaction context as otherwise they would have
taken up to 30 hours to execute with full ACID guarantees.
The runtime for the insertion has been measured externally
whereas SQlite’s internal timer has been used for the SELECT
statements. An interesting outcome is that both backends
perform equally well with the anomaly of in-memory insertion
taking longer than its file-backed counterpart. As opposed
to StealthDB, SQlite does not persist in-memory data across
sessions. While most metrics are faster as expected, the sorted
selection is slower in SQlite. The reason for this behaviour
may be caused by lexical rather than binary comparisons and
needs further examinations.

TABLE VI
MILLION MOVIES MANAGEMENT RESULTS WITH SQLITE

Benchmark step Backend Runtime
INSERT memory 12.27s
INSERT file 10.83s
SELECT memory 0.24s
SELECT file 0.26s
SELECT ORDER BY memory 6.60s
SELECT ORDER BY file 6.75s
SELECT SUM(id) memory 0.12s
SELECT SUM(id) file 0.13s

There is a lot of optimisation potential in StealthDB by
adding native methods (implemented in C), skipping sub-
column aggregation if there is only one sub-column, and using
persistent file handles and proper binary file formats. Fig.
8 visualises the overheads in the current StealthDB imple-
mentation when traversing different paths from plain storage
in memory with local processing to distributed processing
over encrypted dispersed data fragments in the cloud. The
overheads prevent the system from many practical use cases
where performance matters. Nevertheless, even in its current
initial state, StealthDB shows potential for cases in which
confidentiality, availability and other service quality properties
matter. We expect production-level database systems to pick
up sub-column and dispersed processing concepts in the near
future.

D. Applications and Trade-Offs

Despite the mentioned limitations, we have been able to
test StealthDB under load and produce applications which
embed the database layer to manage sensitive data in the
cloud. Among them, an e-sports tracker for managing sensor
data from personal sports activities data, a travel database
to record trips to places around the world, an enterprise
asset management database and a secure distributed searchable
document management portal have been implemented. Often,
the volume of the data to be managed is small compared to



Fig. 8. Overhead factors comparison figure

its value. For such use cases, stealth database designs offer
compelling benefits.

For the users, it is important to understand the significance
of trade-offs. Fig. 9 demonstrates that there is a sweet spot,
or pivot point, concerning the performance loss due to the
stealth processing and the performance gain due to less data
transmission for an aggregate query of the form SELECT
AVG(x). The query is once processed locally and once over
an 1GBit/s Ethernet connection.
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Fig. 9. Performance trade-off for an aggregate query

IV. RELATED WORK

A number of database systems has been proposed and
implemented to ensure combinations of availability, confiden-
tiality and integrity of sensitive data and queries. Privacy
Integrated Queries (PINQ) is a data management platform
which applies differential privacy to its results [18]. This
technique offers a trade-off between result accuracy and
identity revelation. PINQ is however not distributing its data

across services. TrustedDB [13] uses a hardware design to
ensure a tamper-proof isolation of server parts of a database
system which makes it suitable for outsourcing into the public
cloud. The system guarantees data confidentiality and privacy.
The main claim of TrustedDB is that the initial cost for the
hardware will be recovered quickly by saving computational
cost for queries over encrypted data. CryptDB is running
atop a MySQL/PostgreSQL server with user-defined function
extensions which encrypts its data with query-aware schemes
[19]. It protects against intruders and curious administrators
and has a low overhead but fails at more complex SQL queries,
such as the majority of the TPC-H reference set. Monomi
extends CryptDB by evaluating the problematic query parts
on the client instead. This design is similar to StealthDB’s
although it does not represent a map-reduce pattern. Pre-
vious approaches with the same idea have been available
for some time, although most of them assume a centralised
query execution over holistic (encrypted or not) values [20].
Relational Cloud is a proposal to achieve a more complete
protection against unavailability by adding full replication
[21]. This approach requires high and potentially expensive
storage capacities. In scientific computing, replication and
caching of non-confidential data is commonplace to increase
the processing performance [22]. In contrast, StealthDB uses
partial replication through bitsplit coding to reduce the re-
quired capacity at the expense of query performance. Hence,
the four properties of confidentiality, availability, capacity
and performance form a rectangle in which only a triangle
of three out of four parameters can be optimised for with
current systems. In Fig. 10, the optimisation potential of secure
cloud database systems towards more general user-requested
properties, which include security protection goals, is visually
compared.

Fig. 10. Related approaches according to their support for non-functional
properties

Beyond secure storage and processing of data, sharing the
data among multiple users is also a concern for the design of
cloud database systems. Self-controlling objects have recently
been proposed for this purpose to allow for user collabora-
tion over confidential databases [23]. Another complementary
functionality for stealth layers is the check of data possession
at random time intervals. Various proof-of-possession (PoP)
and proof-of-retrievability (PoR) schemes have been designed
with a zero or close-to-zero knowledge remaining on the client.
These schemes still need to be evaluated in the context of



secure databases [24].

V. SUMMARY AND FUTURE WORK

Stealth databases represent a novel distributed data manage-
ment design targeted at maintaining data security in untrusted
environments with low capacity but rather high performance
overheads. Our prototype StealthDB, while currently only im-
plementing a subset of SQL, allows for a thorough evaluation
of stealth database concepts. The results of our experiments
show that for smaller workloads such as sensitive private data,
the system performs reasonably well. In the future, we intend
to tackle the performance issues with optimised calculation
modules. Furthermore, we want to explore novel algorithms
over bitsplit codes as well as applications of dispersed pro-
cessing to other coding schemes such as systematic erasure
codes. Finally, we want to increase the practical utility by
designing native cloud applications which embed StealthDB
for their data management tasks.
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