
Mobile Cloud Networking: 
Hurtle, Cyclops, Gatekeeper

Prof-Dr. Thomas Michael Bohnert (TMB)



• Deliver your software as a service?

• How to compose existing services?

• How deliver and maintain reliability?

• How to monetise your software?

Challenges



How to offer your software as a 
service?”

● Automate the life-cycle management of your service, 
from deployment to disposal

● Recursive service composition
● Designed for Cloud-Native Applications
● Designed for Cross-Domain Orchestration

The Challenge



Implementation

Dependencies:
• OpenShift
• OpenStack

Abstracted through the 
Cloud Controller

Standard:
• OCCI



Key Components of Hurtle

• Service Manager (SM): receives requests for new tenant 
service instances

• https://github.com/icclab/hurtle_sm
• Service Orchestrator (SO): manages the lifecycle of a 

tenant service instance
• sample https://github.com/icclab/hurtle_sample_so

• CloudController (CC): manages and abstracts underlying 
resources and SOs

• https://github.com/icclab/hurtle_cc_api



Features

● Complete orchestration of your software lifecycle

Easy implementation of your service API - See how to write your Hurtle Service

● Guided implementation of your service manager

Many languages supported including Python, Java, Perl, PHP, Demo applications available

● Scalable runtime management

Complete end-to-end logging of your software

● Integration with OpenStack, ICCLab's Joyent SDC contribs

● Handle potential incidents of your software, 

On-Going Integration with ICCLab's Watchtower (Cloud Incident Management)

● Leverages Open Cloud Standards (OCCI, OpenStack), Multi-dc/multi-region support

● Bill for your software and services, 

Integration with ICCLab's Cyclops (Rating, charging & Billing)

https://github.com/icclab/hurtle/blob/master/docs/how_to_write_a_hurtle_service.md
http://www.openstack.org/
https://github.com/icclab/sdc-heat
https://github.com/icclab/watchtower-common
http://www.occi-wg.org/
http://www.openstack.org/
https://icclab.github.io/cyclops/


Roadmap

● More examples including the cloud native Zurmo implementation from ICCLab

● Enhanced workload placement, dynamic policy-based

● Support for docker-registry deployed containers: OpenShift v3

● Runtime updates to service and resource topologies

● CI and CD support

o safe monitored dynamic service updates

● TOSCA support

● Support for VMware and CloudStack

● User interface to visualise resource and services relationships

● Additional external service endpoint protocol support

https://github.com/icclab/cna-seed-project


How to monetize your service?

● Provide a complete rating, charging, and billing service
● Able to deal with multi-domain/multi-provider service 

compositions
● Able to deal with dynamics inherent to metered cloud 

services (pay-as-you-go)
● Itself to be provided as a service – VAS for cloud 

operators

The Challenge



Key Components

Gatekeeper: simple 
authentication/authorization micro-
service

Event bus: rabbitmq based service 
for collecting key events, including 
SLA violations

udr-microservice: ‘usage’ data 
collection, transformation and 
storage + UDR generation

rc-microservice: rule based rating 
engine - rate generation, and CDR 
generation and storage

billing-microservice: CDR 
aggregation and bill generation 
(pull based), discounts, penalties, 
coupon processing, VAT rules, etc.



Technology Landscape

Codebase mostly written in Java + Frontend written in Java & 

Angularjs

Gatekeeper code written in go!

Database: Influxdb (tsdb)

Rule engine: drools

Scheduler: will be replaced by in-house scheduler

REST interface developed using restlet framework

Message broker: Rabbitmq

Inter-microservice line message format: json



Roadmap

● Data collection failure tracking and recovery mechanism

○ Keeping track of failed collection periods

○ Lazy recovery attempts to fill usage data for missing timeline entries

● Light-weight marketplace in dashboard

○ for proof of concept and demonstrations

○ ISV /app developer view - revenue reports, deployments tracking and metrics visualization



Links

HURTLE

GitHub: https://github.com/icclab/hurtle
• Architecture
• Implementation
• Write your own service

Website: http://hurtle.it/, Twitter: @hurtle_it , Mailing List: icclab-hurtle@dornbirn.zhaw.ch

Advanced Service Composition: https://www.youtube.com/watch?v=03YiBT3IM9s

CYCLOPS

All about RCB and CYCLOPS 
http://blog.zhaw.ch/icclab/category/research-approach/themes/rating-charging-billing/

GitHub:
http://icclab.github.io/cyclops/ and http://icclab.github.io/gatekeeper/

https://github.com/icclab/hurtle
https://github.com/icclab/hurtle/blob/master/docs/architecture.md
https://github.com/icclab/hurtle/blob/master/docs/hurtle_technical_implementation.md
https://github.com/icclab/hurtle/blob/master/docs/how_to_write_a_hurtle_service.md
http://hurtle.it/
https://twitter.com/hurtle_it
mailto:icclab-hurtle@dornbirn.zhaw.ch
https://www.youtube.com/watch?v=03YiBT3IM9s
http://blog.zhaw.ch/icclab/category/research-approach/themes/rating-charging-billing/
http://icclab.github.io/cyclops/
http://icclab.github.io/gatekeeper/


Questions

http://blog.zhaw.ch/icclab/



Hurtle & the ICCLab



Implementation in Practice



Implementation in Practice



Runtime Module

Automatic alarm creation for each new service provisioning, with callback to the service 
orchestrator. Monasca as technology.



Write your own, easily!

• To create a new service, write a Service Definition and a Service Bundle
• Service Definition
• Service Bundle

• Service Orchestrator: Your service’s logic
• Service Manifest: Your service dependencies
• Heat Template: The resources your service needs

• Testing is easy
• Service Def. is an executable python app
• run it, then send OCCI requests, e.g.

• curl -v -X POST http://localhost:8888/exam ple/ -H 'Category: exam ple; schem e="http://schem as.hurtle.it/occi/sm #"; 

class="kind";' -H 'content-type: text/occi' -H 'x-tenant-nam e: YOUR_TENANT_NAM E' -H 'x-auth-token: 

YOUR_KEYSTONE_TOKEN'

https://github.com/icclab/hurtle/blob/master/docs/how_to_write_a_hurtle_service.md#service-definition
https://github.com/icclab/hurtle/blob/master/docs/how_to_write_a_hurtle_service.md#service-bundle

	Slide 1
	The Challenge
	Key Components of Hurtle
	Features
	Roadmap
	Slide 9
	Slide 10
	Slide 11
	Links
	Slide 13
	Hurtle & the ICCLab
	Implementation in Practice
	Implementation in Practice
	Runtime Module
	Write your own, easily!

