
Zürcher Fachhochschule

Experimental Evaluation of the Cloud-

Native Application Design

Sandro Brunner, Martin Blöchlinger, Giovanni Toffetti, 

Josef Spillner, Thomas Michael Bohnert
<josef.spillner@zhaw.ch>

Service Prototyping Lab (blog.zhaw.ch/icclab)

Zurich University of Applied Sciences, Switzerland

December 7, 2015 | 4th CloudAM, Limassol, Cyprus



2

Cloud-Native Apps: Significant Trend!



3

Cloud-Native Apps: Definition (sort of)

Software applications which
● fully exploit cloud features (APIs, infrastructure, platform, processes)
● are resilient against failures
● are elastically scalable
● run as services or end-user applications

Implications
● design: fully redundant microservices, fully/partially redundant data
● technology: rapidly manageable units → containers



4

Cloud-Native Apps: Generic Design

+ discovery



5

Research Questions & Method

CNA are scalable → Does it scale?

CNA are resilient → Does it self-heal?

How to find out:
● Using a typical business application: Zurmo CRM

● customer relationship management
● 3-tier architecture: web frontend, PHP backend, MySQL datastore



6

Experiment Architecture

resilient

scalable



7

Orchestrated Containers Setup



8

Containers in Operation



9

Conducting the Experiment

Tools
● Tsung user load generator (to provoke scalability)

● performs web navigation randomly
● MCS-EMU: multi-cloud unavailability emulator (to provoke resilience)

● terminates Docker containers and VMs randomly, cf. ChaosMonkey, but 

with multiple (un)availability models

Input functions: load, unavailability + configuration (3-10 VMs)



10

Conducting the Experiment

Tsung
load

MCS-EMU
terminations

+ discovery



11

Observations

Output function assessment
● Tsung trace file
● Kibana dashboard views
● Zurmo application behaviour
● internal states: etcd, AWS

dashboard, logs etc.

Comparison with desired

behaviour
● response times should remain +/- stable no matter what (for 3 VMs)



12

Observations with more (10) VMs



13

Findings (incl. delta to paper)

Answers to Research Questions

1. Does it scale?

→ Yes, but:
● question of trigger metrics: external vs. application-internal
● still some startup overhead with containers

2. Does it self-heal?

→ Yes, but:
● tooling itself not resilient, random termination affects 

experiments
● deficiencies in standard software, e.g. MySQL clustering init
● container managers -- fleet in our case -- may misbehave, 

assumption is correct behaviour



14

Conclusions

Evaluation: CNA design
● is effective & re-usable, if done right
● but: very tricky especially with used tooling
● alternative approaches: Kubernetes looks promising

Re-usable contributions
● Dynamite scaling engine
● Testing tools
● Dockerised scenario application

Code available!
https://github.com/icclab/cna-seed-project

Video available soon! (3 minutes demo cut)



15

'Methodology' + Lessons Learnt

Step 1: Use case identification

Step 2: Platform
● CoreOS bug: concurrent pull of containers from public hub
● Fleet bug: sometimes, containers are not scheduled for launch
● Docker bug #471: only partial download → failure cascade
● etcd restriction: cannot kill 3 member nodes → «Monsanto solution»
● etcd bug: no more requests accepted when disk full

Step 3: Architectural changes
● outsourced session handling to cache + database in parallel

Step 4: Monitoring
● new Logstash output adapter which forwards to etcd

Step 5: Autoscaling
● Dynamite instructs Fleet for horizontal scale-out; is itself CNA


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

