
SDN enabled QoS Provision for Online
Streaming Services in Residential ISP Networks
Irena Trajkovska†, Philipp Aeschlimann‡, Christof Marti‡, Thomas Michael Bohnert‡, Joaquı́n Salvachúa†

† Universidad Politécnica de Madrid, 28040 Madrid, Spain
‡ Zurich University of Applied Sciences, 8401 Winterthur, Switzerland

Abstract—In this paper we present an idea of a propriety
Software Defined residential Network (SDrN) and we show as a
use case, a multicast streaming service that can be hosted on such
networks. To verify the feasibility of the service in the context of
quality of service, we offer to the providers of online streaming
services (in some cases the ISPs themselves), APIs to control and
validate the QoS of the users in the service. The QoS control
APIs were tested on SDN based simulation environment.

Index Terms—sdn, openflow, qos, streaming

I. INTRODUCTION

Various Internet Service Providers (ISPs) today rely on
their own network infrastructure to offer Internet TV services.
Those services require costly dedicated servers and constant
load balancing to deal with flash crowds during peak hours.

Thanks to the Software Defined Networking (SDN) [1]
paradigm, the ISPs can implement more flexible infrastructure
and take over the network control in order to offer better and
optimal services to the users. SDN delegates the control of
the network to a software component inside a switch, enabling
transparent interaction with the network resources according
to the application’s preferences. This is enabled thanks to the
OpenFlow protocol that defines a communication interface
between the control and the network plane. Any software that
supports OpenFlow, can be used to control the forwarding
decisions in OpenFlow configured network devices. Following
these directives, the ISPs can deploy online streaming services
with critical quality of service (QoS) demands over dedicated
SDN infrastructure, while maintaining the rest of the services
run over conventional network.

In this paper we discuss SDN based QoS management for
online streaming services deployed over residential networks.
To demonstrate the technical feasibility, we propose APIs to
adjust the users’ QoS by using the OpenFlow protocol. As
a use case, we base our proposal on P2P multicast scenario
aimed for streaming services that may note a big benefit from
the solution.

Most of the proprietary TV services charge their users a flat-
rate price for unlimited real-time/on-demand videos with best-
effort QoS. In a previous work, we studied a P2P streaming
service with variable prices depending on the QoS levels.
Motivated from this idea, we study here the SDN possibility
to implement such a service in practise. The opportunity for
QoS management in the OpenFlow protocol, have triggered
some research efforts to approach the QoS problem from a
network level. As example, a QoS driven management was

Fig. 1. SDN based residential network for dedicated streaming services

studied by Yiakoumis et al. [2]. The authors argue that the
user’s preferences on the application should guide the network
traffic from home to the ISP network. Although similar to our
idea for SDN based QoS adjustment, the proposal differs as it
the focuses of direct user-ISP interaction and on-demand QoS
change, while we leave the QoS maintenance responsibility
to the content providers/ISPs, once the service preference has
been done. Similarly, the authors in [3] propose SDN prototype
architecture for future dynamic QoS provision in end-to-
end applications. Next we describe the residential streaming
service architecture.

II. RESIDENTIAL SDN STREAMING SERVICE

Figure 1, shows a use case scenario of SDN-based resi-
dential topology. Instead of using an already existing network
infrastructure, the ISP deploys a separate SDN solution ded-
icated to online streaming service. Each neighborhood has
SDN-enabled network, supervised by an OpenFlow-configured
controller. If based on a client-server solution, a real-time
service delivery requires very stable and scalable underlying
topology that is expensive. As alternative, the P2P topology for
media delivery is becoming increasingly present in real-time
services, despite the challenges for constant QoS assurance.

Let’s say that the provider offers the streaming service with
three types of prices (highest to lowest): gold, silver and
bronze based on the video quality. To provide scalable QoS



offer on application level, the provider can slice the video into
smaller portions. Then he either pushes the sub-streams to the
users directly from the video source or disseminates them in
P2P multicast fashion, adapting the sent sub-streams quantity
to the desired video quality. By using the SDN paradigm, the
provider can achieve the same effect on a network level and
provide the desired QoS by adjusting the underlying network
topology between the source and the users, or between two
users in the multicast. Although the P2P algorithms show
significant improvement lately, when it comes to multimedia
streaming, there is no standardized QoS protocol for P2P
multicast. We part form this gap and the SDN advantage in
order to leverage the P2P service from our previous work [4]
and propose APIs for QoS management in streaming multicast
services.

The advantage of the SDN based QoS control, is the possi-
bility to offer end-to-end quality for real-time video delivery
that is tuned down on a network level. This approach abstracts
from the complex P2P overlay algorithms on the top of the
network infrastructure. Instead, it shifts the interconnection
decisions to the SDN control panel, thus enabling a direct
mapping between the users’ virtual and physical connections.
Moreover it provides a better management of the physical
topology with direct QoS supervision. The drawback of this
solution is its current limitation to work only in a proprietary
SDN infrastructure – enclosed in a residential ISP network or a
private cloud deployment. For the moment, there is undergoing
initiative of the switch producers to facilitate their solutions
with OpenFlow support. Yet a global coordination and control
interface across multiple SDN domains is about to come.

III. APIS FOR QOS MANAGEMENT

We propose QoS control APIs for residential SDN networks.
As previously discussed, these APIs can be adapted by the
streaming providers for QoS management in online streaming
services or used by the ISPs for QoS adjustment on a network
level. We describe the APIs in the context of streaming
service scenario. When a user connects to online service to
watch a streaming video, he sets up the desired QoS and his
willingness to participate in a P2P multicast.
(1) get_connected_users()
(2) get_closest_nodes_list()
(3) get_current_bw(newNode, [closestNodes])
(4) connect(newNode, hostNode)
(5) adjust_bw(newNode, closestNodest)

Using the Mininet 2.1 [5] emulator, we simulated a network
of nodes connected to an OpenFlow 1.3 Software Switch. The
switch implements a Ryu [6] controller application. Ryu is
SDN framework that supports various protocols for managing
network devices.

Upon this negotiation, the provider invokes API (1) to
retrieve a list of the connected users. Afterwards, the candidate
nodes are calculated, that are close to the new node by using
the ping tool in Mininet for the RTT distance between the
new node and the rest of the nodes, API (2). All the nodes
that respond within a delay specified in the negotiated interval,
are chosen as potential host nodes for the new node. The API

Fig. 2. Adjusting BW between nodes in a multicast tree using OpenFlow

(3) calculates the bandwidth between the new node and the
potential nodes. The node that has a BW value that fits within
the requested interval, becomes a host for the new node, API
(4). Otherwise with API (5), the algorithm adjusts the BW
between the new node and the closest node to match with the
requested value, as shown on Figure 2.

The BW control algorithm bases on the OpenFlow Meter
Bands [1]. The basic idea is to slice the maximal bandwidth a
device can offer into one or more rate-limiters. The controller
application detects any new device connected to the network
and adds in its initial state, a rate-limiter associated to that
device. This rate limiter is equal to the total amount of band-
width that the device can offer. We validated the correctness
of the API calls by invoking REST calls to retrieve the current
QoS state. Testing the APIs with the use case scenario, showed
the SDN approach to be convenient for QoS control in P2P
multicast environment. The described proposal is aimed to
motivate the ISPs to deploy a complete SDN solution within
different neighborhoods of a city, as a host infrastructure
for dedicated online streaming services. The SDN approach
optimizes the use of the infrastructure resources, enabling the
ISPs to host QoS critical and elastic services.

IV. CONCLUSIONS

We proposed an idea of SDN based residential network
and APIs for QoS management in a streaming service to be
implemented in similar SDN-enabled networks. As a use case,
we applied the APIs to a multicast service and proved the
feasibility to offer a network level QoS adjustment for P2P
streaming services.

REFERENCES

[1] “OpenFlow 1.4.0 Specification,” Apr. 2014. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[2] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K. Yap, and
R. Johari, “Putting home users in charge of their network,” in Proc.
of 2012 ACM Conference on Ubiquitous Computing, ser. UbiComp ’12.
New York, NY, USA: ACM, 2012, pp. 1114–1119.

[3] I. Bueno, J. Aznar, E. Escalona, J. Ferrer, and J. Antoni Garcia-Espin,
“An opennaas based sdn framework for dynamic qos control,” in Future
Networks and Services, 2013 IEEE SDN for, Nov 2013, pp. 1–7.

[4] I. Trajkovska, P. Rodrı́guez, J. Cerviño, P. Harsh, and J. Salvachúa, “P2P
Incentive Model for QoS based Streaming Systems,” in Proc. of the Int.
conference on Consumer Communications and Networking, ser. CCNC
’14. IEEE, 2014.

[5] “Mininet,” Apr. 2014. [Online]. Available: http://mininet.org
[6] “Ryu,” Apr. 2014. [Online]. Available: http://osrg.github.io/ryu/


