
From Bare Metal to Cloud
Andy Edmonds, @dizz, ICCLab, ZHAW

Piotr Kasprzak, GWDG

Intros

ICCLab
● Zurich University for

Applied Sciences
● Cloud Computing

Research

GWDG
● Service Provider for

Max Planck Society
and University of
Goettingen

● Research

GWDG Cloud Hardware

Nodes 38
CPUs 152
Core 2432
Memory 9728 TB

Nodes 20
CPUs 80
Core 1280
Memory 1920 TB

ICCLab Cloud Hardware

We've Hardware for Cloud!

Challenges or Problems?

● Clouds in essence
are big data centres

○ Means lots of servers:

■ Manual configuration
not an option

■ Automation is
required

Challenges or Problems?

Cloud frameworks can/are be complicated!

Challenges or Problems?

● But Clouds are "cool" - Aayyy!

● How to deploy a "cloud"
○ with minimal user interaction?
○ least number of "hands"?
○ across many servers?

BUT

Challenges or Problems?

● How to share/standardise these
processes?
○ Configuration - drift prevention
○ Testing - configuration, system functionality
○ Compliance - auditing, ITIL
○ Agility
○ Independence

■ Of physical/virtual deployment
■ Of infrastructure

Automation Toolchain

Automation Toolchain

Provision - OS rollout

Baremetal VM

?

● "Single Address For All Machines Lifecycle
Management".

● Manages or proxies to DNS, DHCP, TFTP,
Virtual Machines, PuppetCA, CMDB

● Integrates with Puppet (and acts as web
front end to it).

● Provisions:
○ most flavours of *NIX, Windows
○ Virtual machines - libvirt, oVirt
○ Cloud Resources - Amazon EC2, VMware vCenter

● Has an API! :-)

Provision - Foreman

Provision - Foreman Arch

● Declarative configuration language
○ Describe desired state of a system, not how to

achieve it
○ Idempotence

● Different types of resources: software package, service,
user, configuration file, mysql database, ...

● Dependencies can be formulated
● Grouping of resources by "class" concept:

○ Way of structuring your descriptions
● Abstraction layer for resources:

○ Independence from system type (different variants of
linux, *bsd, mac os, windows, ...)

Configuration - Puppet

current
state

desired
state

==?

sync event

Configuration - Puppet's Model

current
state

desired
state

==?

sync event

package {‘sshd’:
 ensure =>
present,
}

You describe system state...

current
state

desired
state

==?

sync event

package {‘sshd’:
 ensure =>
present,
}

rpm –q sshd

dpkg-query –
search sshd

Puppet collects current state...

current
state

desired
state

!=

sync event

package {‘sshd’:
 ensure =>
present,
}

absent present

rpm –q sshd

dpkg-query –
search sshd

Puppet compares...

current
state

desired
state

!=

sync event

package {‘sshd’:
 ensure =>
present,
}

absent present

yum install sshd

apt-get install sshd

rpm –q sshd

dpkg-query –
search sshd

Puppet synchronizes...

current
state

desired
state

!=

sync event

package {‘sshd’:
 ensure =>
present,
}

absent present

state transition:

absent -> present

rpm –q sshd

dpkg-query –
search sshd

yum install sshd

apt-get install sshd

Puppet logs...

A more complete puppet manifest
class ssh::install {

package { "openssh":
ensure => present, }

}
class ssh::config {

file { "/etc/ssh/sshd_config":
ensure => present,
owner => 'root',
group => 'root',
mode => 0600,
source => "puppet:///modules/ssh/sshd_config",
require => Class["ssh::install"],
notify => Class["ssh::service"], }

}
class ssh::service {

service { "sshd":
ensure => running,
hasstatus => true,
hasrestart => true,
enable => true,
require => Class["ssh::config"], }

}
class ssh {

include ssh::install, ssh::config, ssh::service
}

dependency
"if I change..."

OpenStack @ 10,000m, Looks Easy!

OpenStack - The Ugly Close-up

Complicated
● Many Services
● Many Dependencies

Challenge to deploy
● 100's, 1000's of

nodes?

You need an automated
toolchain!

Apple Moment!

Demo - What could go wrong?!

Multi-node OpenStack Installation

● 1 controller node
○ "boss"

● 1 compute node
○ "worker1"

● More time? Easy to add more.

Demo: Deployment Architecture

Demo: OpenStack Component
Deployment

Demo: Code/Config Details

● There are 2 roles (hostgroups)
○ openstack/controller - controller.pp
○ openstack/compute - compute.pp

● Both have different puppet manifests
○ Same 'icclab' module

What's in a
controller node?

What's in a
compute node?

Conclusions/Learnings

● Automation is essential
● Puppet codifies learnings, makes sharing easy
● Foreman a central management point, full lifecycle,

adaptable to other services
● Dependence on infrastructure service management

frameworks is lessened
○ Fast and efficient to install new ones with a tool

chain
● Other than SLA guarantees, the only guarantee to

maintain is the API between provider and customer and
this is where standard APIs are need such as
OCCI/CDMI/OVF.

Next Steps

● OpenStack to be rolled-out in ICCLab
○ New data centre, rolled-out within the month
○ Will include all OS Nova (Essex) and Swift services

■ Including OCCI interface
● puppetlab-nova pull-request available

● OpenStack to be rolled-out in GWDG
○ Will include all OS Nova (Essex) and Swift services
○ Providing production-quality OpenStack services

Everything Presented is Documented at:
http://www.cloudcomp.ch

http://cloud.gwdg.de
Including:

 - HOWTOs
 - Foreman, Puppet, OpenStack installs

- Virtual Machine images

Thanks!
Questions?

Backup slides

Toolchain map

VM

Dashboard

Git
Config-DB

(SQL)

ITIL CMDB

Puppet Agent

Host
Puppet Agent

Puppet
Master

Foreman Arch

Bare-Metal
VM

Foreman

TFTP DHCP kernel

initrd

packages

kickstart.ks

XEN

VM

KVM

HTTPDNS

Netinstall (PXE) OS artefacts

Puppetmaster <-> agent interaction

What are the common config params?

CNA und FCoE
(Converged Network Adapter/
Fiber Channel over Ethernet)

ToR
(Top of Rack)

EoR/MoR
(End/Middle of Row)

Core

GWDG Cloud topology

